Ontology type: schema:ScholarlyArticle
1981-10
AUTHORSF. J. de Bruijn, F. M. Ausubel
ABSTRACTA 15 kilobase HindIII fragment of Klebsiella pneumoniae DNA containing the glnA gene was cloned into the plasmid vector pACYC184. The resulting plasmid, pFB51, complements glnA- mutations in Escherichia coli and K. pneumoniae. pFB51 also complements the GlnR phenotype of a Klebsiella pneumoniae gln regulatory mutant (KP5060) defined by the restoration of Hut+ and Nif+ (histidine utilization and nitrogen fixation) phenotypes to this strain. Three recombinant plasmids containing subsegments of the 15 kb HindIII fragment were derived from pFB51. Plasmid pFB514 which contains a spontaneous 4 kb delection of K. pneumoniae DNA from pFB51 is more stable than pFB51 and is still able to complement glnA- mutations and the GlnR- phenotype of KP5060. Plasmids pFB53 and pFB54, which contain a 6.5 kb SalI DNA fragment from pFB51 recloned into pACYC184 in opposite orientations, complement glnA- mutations but not the GlnR- phenotype of KP5060. Plasmids pFB514 and pFB53 were mutagenized by transposon Tn5 resulting in a total of 92 Tn5 insertions in the cloned fragments. Utilizing these insertion mutations, a correlated physical and genetic map was constructed by determining the physical location of each Tn5 insertion and by analyzing the ability of each Tn5 mutated plasmid to complement a glnA- strain of E. coli and a glnA- GlnR- strain of K. pneumoniae. Two classes of Tn5 insertions with an altered Gln phenotpye were obtained. One cluster of insertions spanning a 1.3 kb region abolished complementation of the glnA- mutations. A second 2 kb cluster of Tn5 insertions, immediately adjacent to the first cluster, abolished the ability of pFB514 plasmid to complement the GlnR- phenotype, while glnA- complementation was unaffected. We propose that the second cluster of Tn5 insertions define a DNA region coding for a positive regulatory factor for nitrogen fixation (nif) and histidine utilization (hut) genes (glnR). More... »
PAGES289-297
http://scigraph.springernature.com/pub.10.1007/bf00270631
DOIhttp://dx.doi.org/10.1007/bf00270631
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1045836499
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/6120440
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Genetics",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Chromosome Mapping",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "DNA Transposable Elements",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "DNA, Recombinant",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Genes",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Genes, Regulator",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Glutamate-Ammonia Ligase",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Histidine",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Klebsiella pneumoniae",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Nitrogen Fixation",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Phenotype",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Plasmids",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Cellular and Developmental Group, Biology Department, Harvard University, 16 Divinity Ave., 02138, Cambridge, Mass, USA",
"id": "http://www.grid.ac/institutes/grid.38142.3c",
"name": [
"Cellular and Developmental Group, Biology Department, Harvard University, 16 Divinity Ave., 02138, Cambridge, Mass, USA"
],
"type": "Organization"
},
"familyName": "de Bruijn",
"givenName": "F. J.",
"id": "sg:person.01040464547.13",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040464547.13"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Cellular and Developmental Group, Biology Department, Harvard University, 16 Divinity Ave., 02138, Cambridge, Mass, USA",
"id": "http://www.grid.ac/institutes/grid.38142.3c",
"name": [
"Cellular and Developmental Group, Biology Department, Harvard University, 16 Divinity Ave., 02138, Cambridge, Mass, USA"
],
"type": "Organization"
},
"familyName": "Ausubel",
"givenName": "F. M.",
"id": "sg:person.01344062015.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344062015.34"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/289085a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010175313",
"https://doi.org/10.1038/289085a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00271959",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006613125",
"https://doi.org/10.1007/bf00271959"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00267366",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006139561",
"https://doi.org/10.1007/bf00267366"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00433306",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046705218",
"https://doi.org/10.1007/bf00433306"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00267858",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012924575",
"https://doi.org/10.1007/bf00267858"
],
"type": "CreativeWork"
}
],
"datePublished": "1981-10",
"datePublishedReg": "1981-10-01",
"description": "A 15 kilobase HindIII fragment of Klebsiella pneumoniae DNA containing the glnA gene was cloned into the plasmid vector pACYC184. The resulting plasmid, pFB51, complements glnA- mutations in Escherichia coli and K. pneumoniae. pFB51 also complements the GlnR phenotype of a Klebsiella pneumoniae gln regulatory mutant (KP5060) defined by the restoration of Hut+ and Nif+ (histidine utilization and nitrogen fixation) phenotypes to this strain. Three recombinant plasmids containing subsegments of the 15 kb HindIII fragment were derived from pFB51. Plasmid pFB514 which contains a spontaneous 4 kb delection of K. pneumoniae DNA from pFB51 is more stable than pFB51 and is still able to complement glnA- mutations and the GlnR- phenotype of KP5060. Plasmids pFB53 and pFB54, which contain a 6.5 kb SalI DNA fragment from pFB51 recloned into pACYC184 in opposite orientations, complement glnA- mutations but not the GlnR- phenotype of KP5060. Plasmids pFB514 and pFB53 were mutagenized by transposon Tn5 resulting in a total of 92 Tn5 insertions in the cloned fragments. Utilizing these insertion mutations, a correlated physical and genetic map was constructed by determining the physical location of each Tn5 insertion and by analyzing the ability of each Tn5 mutated plasmid to complement a glnA- strain of E. coli and a glnA- GlnR- strain of K. pneumoniae. Two classes of Tn5 insertions with an altered Gln phenotpye were obtained. One cluster of insertions spanning a 1.3 kb region abolished complementation of the glnA- mutations. A second 2 kb cluster of Tn5 insertions, immediately adjacent to the first cluster, abolished the ability of pFB514 plasmid to complement the GlnR- phenotype, while glnA- complementation was unaffected. We propose that the second cluster of Tn5 insertions define a DNA region coding for a positive regulatory factor for nitrogen fixation (nif) and histidine utilization (hut) genes (glnR).",
"genre": "article",
"id": "sg:pub.10.1007/bf00270631",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1297380",
"issn": [
"1617-4615",
"1432-1874"
],
"name": "Molecular Genetics and Genomics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "183"
}
],
"keywords": [
"pneumoniae DNA",
"K. pneumoniae",
"Klebsiella pneumoniae",
"pneumoniae",
"regulatory factors",
"phenotype",
"insertion",
"genes",
"plasmid",
"E. coli",
"total",
"positive regulatory factor",
"recombinant plasmid",
"fixation",
"Escherichia coli",
"strains",
"mutations",
"insertion mutations",
"DNA",
"glnA mutations",
"coli",
"subsegments",
"Tn5 insertion",
"ability",
"factors",
"fragments",
"restoration",
"first cluster",
"delection",
"regulation",
"second cluster",
"HindIII fragment",
"region",
"histidine utilization genes",
"identification",
"plasmid vector pACYC184",
"kb HindIII fragment",
"transposon Tn5 mutagenesis",
"glnA region",
"glnA gene",
"DNA fragments",
"kb cluster",
"regulatory mutants",
"genetic map",
"utilization genes",
"hut operon",
"kb region",
"DNA regions",
"Tn5 mutagenesis",
"nitrogen fixation",
"transposon Tn5",
"clusters",
"cloning",
"opposite orientation",
"pACYC184",
"mutants",
"location",
"Tn5",
"mutagenesis",
"GlnR",
"operon",
"class",
"complementation",
"NIF",
"physical location",
"maps",
"orientation"
],
"name": "The cloning and transposon Tn5 mutagenesis of the glnA region of Klebsiella pneumoniae: Identification of glnR, a gene involved in the regulation of the nif and hut operons",
"pagination": "289-297",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1045836499"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf00270631"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"6120440"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf00270631",
"https://app.dimensions.ai/details/publication/pub.1045836499"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:50",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_173.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf00270631"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00270631'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00270631'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00270631'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00270631'
This table displays all metadata directly associated to this object as RDF triples.
199 TRIPLES
21 PREDICATES
109 URIs
96 LITERALS
18 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf00270631 | schema:about | N010286d4dfcb442d9717566fe4a1cf22 |
2 | ″ | ″ | N1a0db34513224fbe82dfecedd7f8d34f |
3 | ″ | ″ | N37d807be0e2f4f07b243061dc365f9bc |
4 | ″ | ″ | N6f5a982d7f6c4577ac3c5cc842f6b762 |
5 | ″ | ″ | N802c13eb6e404d4eb292f44920145439 |
6 | ″ | ″ | Naa0a3b29c8dd4ac4999c211b00b412db |
7 | ″ | ″ | Nb9830e725042495081fc4d7e4e298b42 |
8 | ″ | ″ | Nd9a37b1b48c1441c9655f32448dd6b2a |
9 | ″ | ″ | Ndc97ffb83b7740fba405d83e6e47628d |
10 | ″ | ″ | Ne27eb444582d489d9fc202f6c5f27459 |
11 | ″ | ″ | Nfe2e232f23a34600b2db2a8f2c9b9110 |
12 | ″ | ″ | anzsrc-for:06 |
13 | ″ | ″ | anzsrc-for:0604 |
14 | ″ | schema:author | Nbb1cd79ab0e6402e98c57c02d90d398a |
15 | ″ | schema:citation | sg:pub.10.1007/bf00267366 |
16 | ″ | ″ | sg:pub.10.1007/bf00267858 |
17 | ″ | ″ | sg:pub.10.1007/bf00271959 |
18 | ″ | ″ | sg:pub.10.1007/bf00433306 |
19 | ″ | ″ | sg:pub.10.1038/289085a0 |
20 | ″ | schema:datePublished | 1981-10 |
21 | ″ | schema:datePublishedReg | 1981-10-01 |
22 | ″ | schema:description | A 15 kilobase HindIII fragment of Klebsiella pneumoniae DNA containing the glnA gene was cloned into the plasmid vector pACYC184. The resulting plasmid, pFB51, complements glnA- mutations in Escherichia coli and K. pneumoniae. pFB51 also complements the GlnR phenotype of a Klebsiella pneumoniae gln regulatory mutant (KP5060) defined by the restoration of Hut+ and Nif+ (histidine utilization and nitrogen fixation) phenotypes to this strain. Three recombinant plasmids containing subsegments of the 15 kb HindIII fragment were derived from pFB51. Plasmid pFB514 which contains a spontaneous 4 kb delection of K. pneumoniae DNA from pFB51 is more stable than pFB51 and is still able to complement glnA- mutations and the GlnR- phenotype of KP5060. Plasmids pFB53 and pFB54, which contain a 6.5 kb SalI DNA fragment from pFB51 recloned into pACYC184 in opposite orientations, complement glnA- mutations but not the GlnR- phenotype of KP5060. Plasmids pFB514 and pFB53 were mutagenized by transposon Tn5 resulting in a total of 92 Tn5 insertions in the cloned fragments. Utilizing these insertion mutations, a correlated physical and genetic map was constructed by determining the physical location of each Tn5 insertion and by analyzing the ability of each Tn5 mutated plasmid to complement a glnA- strain of E. coli and a glnA- GlnR- strain of K. pneumoniae. Two classes of Tn5 insertions with an altered Gln phenotpye were obtained. One cluster of insertions spanning a 1.3 kb region abolished complementation of the glnA- mutations. A second 2 kb cluster of Tn5 insertions, immediately adjacent to the first cluster, abolished the ability of pFB514 plasmid to complement the GlnR- phenotype, while glnA- complementation was unaffected. We propose that the second cluster of Tn5 insertions define a DNA region coding for a positive regulatory factor for nitrogen fixation (nif) and histidine utilization (hut) genes (glnR). |
23 | ″ | schema:genre | article |
24 | ″ | schema:isAccessibleForFree | false |
25 | ″ | schema:isPartOf | N594ea8a5bb9b4f6e892258a8c2b91a3c |
26 | ″ | ″ | Ncae0b2b07143418795ba2d1e19ce459c |
27 | ″ | ″ | sg:journal.1297380 |
28 | ″ | schema:keywords | DNA |
29 | ″ | ″ | DNA fragments |
30 | ″ | ″ | DNA regions |
31 | ″ | ″ | E. coli |
32 | ″ | ″ | Escherichia coli |
33 | ″ | ″ | GlnR |
34 | ″ | ″ | HindIII fragment |
35 | ″ | ″ | K. pneumoniae |
36 | ″ | ″ | Klebsiella pneumoniae |
37 | ″ | ″ | NIF |
38 | ″ | ″ | Tn5 |
39 | ″ | ″ | Tn5 insertion |
40 | ″ | ″ | Tn5 mutagenesis |
41 | ″ | ″ | ability |
42 | ″ | ″ | class |
43 | ″ | ″ | cloning |
44 | ″ | ″ | clusters |
45 | ″ | ″ | coli |
46 | ″ | ″ | complementation |
47 | ″ | ″ | delection |
48 | ″ | ″ | factors |
49 | ″ | ″ | first cluster |
50 | ″ | ″ | fixation |
51 | ″ | ″ | fragments |
52 | ″ | ″ | genes |
53 | ″ | ″ | genetic map |
54 | ″ | ″ | glnA gene |
55 | ″ | ″ | glnA mutations |
56 | ″ | ″ | glnA region |
57 | ″ | ″ | histidine utilization genes |
58 | ″ | ″ | hut operon |
59 | ″ | ″ | identification |
60 | ″ | ″ | insertion |
61 | ″ | ″ | insertion mutations |
62 | ″ | ″ | kb HindIII fragment |
63 | ″ | ″ | kb cluster |
64 | ″ | ″ | kb region |
65 | ″ | ″ | location |
66 | ″ | ″ | maps |
67 | ″ | ″ | mutagenesis |
68 | ″ | ″ | mutants |
69 | ″ | ″ | mutations |
70 | ″ | ″ | nitrogen fixation |
71 | ″ | ″ | operon |
72 | ″ | ″ | opposite orientation |
73 | ″ | ″ | orientation |
74 | ″ | ″ | pACYC184 |
75 | ″ | ″ | phenotype |
76 | ″ | ″ | physical location |
77 | ″ | ″ | plasmid |
78 | ″ | ″ | plasmid vector pACYC184 |
79 | ″ | ″ | pneumoniae |
80 | ″ | ″ | pneumoniae DNA |
81 | ″ | ″ | positive regulatory factor |
82 | ″ | ″ | recombinant plasmid |
83 | ″ | ″ | region |
84 | ″ | ″ | regulation |
85 | ″ | ″ | regulatory factors |
86 | ″ | ″ | regulatory mutants |
87 | ″ | ″ | restoration |
88 | ″ | ″ | second cluster |
89 | ″ | ″ | strains |
90 | ″ | ″ | subsegments |
91 | ″ | ″ | total |
92 | ″ | ″ | transposon Tn5 |
93 | ″ | ″ | transposon Tn5 mutagenesis |
94 | ″ | ″ | utilization genes |
95 | ″ | schema:name | The cloning and transposon Tn5 mutagenesis of the glnA region of Klebsiella pneumoniae: Identification of glnR, a gene involved in the regulation of the nif and hut operons |
96 | ″ | schema:pagination | 289-297 |
97 | ″ | schema:productId | N4a976d282a2940aab0811331edf28299 |
98 | ″ | ″ | Nb543a10d68744201b7f3192a533923cc |
99 | ″ | ″ | Nf383bdf9ec114b68a72db86e377be711 |
100 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1045836499 |
101 | ″ | ″ | https://doi.org/10.1007/bf00270631 |
102 | ″ | schema:sdDatePublished | 2022-08-04T16:50 |
103 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
104 | ″ | schema:sdPublisher | N953fd2d2e52e4022996432a2b9de7012 |
105 | ″ | schema:url | https://doi.org/10.1007/bf00270631 |
106 | ″ | sgo:license | sg:explorer/license/ |
107 | ″ | sgo:sdDataset | articles |
108 | ″ | rdf:type | schema:ScholarlyArticle |
109 | N010286d4dfcb442d9717566fe4a1cf22 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
110 | ″ | schema:name | DNA, Recombinant |
111 | ″ | rdf:type | schema:DefinedTerm |
112 | N1a0db34513224fbe82dfecedd7f8d34f | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
113 | ″ | schema:name | Klebsiella pneumoniae |
114 | ″ | rdf:type | schema:DefinedTerm |
115 | N37d807be0e2f4f07b243061dc365f9bc | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
116 | ″ | schema:name | Histidine |
117 | ″ | rdf:type | schema:DefinedTerm |
118 | N4a976d282a2940aab0811331edf28299 | schema:name | dimensions_id |
119 | ″ | schema:value | pub.1045836499 |
120 | ″ | rdf:type | schema:PropertyValue |
121 | N594ea8a5bb9b4f6e892258a8c2b91a3c | schema:volumeNumber | 183 |
122 | ″ | rdf:type | schema:PublicationVolume |
123 | N6f5a982d7f6c4577ac3c5cc842f6b762 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
124 | ″ | schema:name | DNA Transposable Elements |
125 | ″ | rdf:type | schema:DefinedTerm |
126 | N802c13eb6e404d4eb292f44920145439 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
127 | ″ | schema:name | Glutamate-Ammonia Ligase |
128 | ″ | rdf:type | schema:DefinedTerm |
129 | N953fd2d2e52e4022996432a2b9de7012 | schema:name | Springer Nature - SN SciGraph project |
130 | ″ | rdf:type | schema:Organization |
131 | Naa0a3b29c8dd4ac4999c211b00b412db | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
132 | ″ | schema:name | Chromosome Mapping |
133 | ″ | rdf:type | schema:DefinedTerm |
134 | Nb543a10d68744201b7f3192a533923cc | schema:name | pubmed_id |
135 | ″ | schema:value | 6120440 |
136 | ″ | rdf:type | schema:PropertyValue |
137 | Nb9830e725042495081fc4d7e4e298b42 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
138 | ″ | schema:name | Genes, Regulator |
139 | ″ | rdf:type | schema:DefinedTerm |
140 | Nbb1cd79ab0e6402e98c57c02d90d398a | rdf:first | sg:person.01040464547.13 |
141 | ″ | rdf:rest | Nf293f33fd60f46b58da8924e8b75dfb7 |
142 | Ncae0b2b07143418795ba2d1e19ce459c | schema:issueNumber | 2 |
143 | ″ | rdf:type | schema:PublicationIssue |
144 | Nd9a37b1b48c1441c9655f32448dd6b2a | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
145 | ″ | schema:name | Phenotype |
146 | ″ | rdf:type | schema:DefinedTerm |
147 | Ndc97ffb83b7740fba405d83e6e47628d | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
148 | ″ | schema:name | Genes |
149 | ″ | rdf:type | schema:DefinedTerm |
150 | Ne27eb444582d489d9fc202f6c5f27459 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
151 | ″ | schema:name | Plasmids |
152 | ″ | rdf:type | schema:DefinedTerm |
153 | Nf293f33fd60f46b58da8924e8b75dfb7 | rdf:first | sg:person.01344062015.34 |
154 | ″ | rdf:rest | rdf:nil |
155 | Nf383bdf9ec114b68a72db86e377be711 | schema:name | doi |
156 | ″ | schema:value | 10.1007/bf00270631 |
157 | ″ | rdf:type | schema:PropertyValue |
158 | Nfe2e232f23a34600b2db2a8f2c9b9110 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
159 | ″ | schema:name | Nitrogen Fixation |
160 | ″ | rdf:type | schema:DefinedTerm |
161 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
162 | ″ | schema:name | Biological Sciences |
163 | ″ | rdf:type | schema:DefinedTerm |
164 | anzsrc-for:0604 | schema:inDefinedTermSet | anzsrc-for: |
165 | ″ | schema:name | Genetics |
166 | ″ | rdf:type | schema:DefinedTerm |
167 | sg:journal.1297380 | schema:issn | 1432-1874 |
168 | ″ | ″ | 1617-4615 |
169 | ″ | schema:name | Molecular Genetics and Genomics |
170 | ″ | schema:publisher | Springer Nature |
171 | ″ | rdf:type | schema:Periodical |
172 | sg:person.01040464547.13 | schema:affiliation | grid-institutes:grid.38142.3c |
173 | ″ | schema:familyName | de Bruijn |
174 | ″ | schema:givenName | F. J. |
175 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040464547.13 |
176 | ″ | rdf:type | schema:Person |
177 | sg:person.01344062015.34 | schema:affiliation | grid-institutes:grid.38142.3c |
178 | ″ | schema:familyName | Ausubel |
179 | ″ | schema:givenName | F. M. |
180 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344062015.34 |
181 | ″ | rdf:type | schema:Person |
182 | sg:pub.10.1007/bf00267366 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1006139561 |
183 | ″ | ″ | https://doi.org/10.1007/bf00267366 |
184 | ″ | rdf:type | schema:CreativeWork |
185 | sg:pub.10.1007/bf00267858 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1012924575 |
186 | ″ | ″ | https://doi.org/10.1007/bf00267858 |
187 | ″ | rdf:type | schema:CreativeWork |
188 | sg:pub.10.1007/bf00271959 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1006613125 |
189 | ″ | ″ | https://doi.org/10.1007/bf00271959 |
190 | ″ | rdf:type | schema:CreativeWork |
191 | sg:pub.10.1007/bf00433306 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1046705218 |
192 | ″ | ″ | https://doi.org/10.1007/bf00433306 |
193 | ″ | rdf:type | schema:CreativeWork |
194 | sg:pub.10.1038/289085a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1010175313 |
195 | ″ | ″ | https://doi.org/10.1038/289085a0 |
196 | ″ | rdf:type | schema:CreativeWork |
197 | grid-institutes:grid.38142.3c | schema:alternateName | Cellular and Developmental Group, Biology Department, Harvard University, 16 Divinity Ave., 02138, Cambridge, Mass, USA |
198 | ″ | schema:name | Cellular and Developmental Group, Biology Department, Harvard University, 16 Divinity Ave., 02138, Cambridge, Mass, USA |
199 | ″ | rdf:type | schema:Organization |