The cloning and transposon Tn5 mutagenesis of the glnA region of Klebsiella pneumoniae: Identification of glnR, a gene involved in ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1981-10

AUTHORS

F. J. de Bruijn, F. M. Ausubel

ABSTRACT

A 15 kilobase HindIII fragment of Klebsiella pneumoniae DNA containing the glnA gene was cloned into the plasmid vector pACYC184. The resulting plasmid, pFB51, complements glnA- mutations in Escherichia coli and K. pneumoniae. pFB51 also complements the GlnR phenotype of a Klebsiella pneumoniae gln regulatory mutant (KP5060) defined by the restoration of Hut+ and Nif+ (histidine utilization and nitrogen fixation) phenotypes to this strain. Three recombinant plasmids containing subsegments of the 15 kb HindIII fragment were derived from pFB51. Plasmid pFB514 which contains a spontaneous 4 kb delection of K. pneumoniae DNA from pFB51 is more stable than pFB51 and is still able to complement glnA- mutations and the GlnR- phenotype of KP5060. Plasmids pFB53 and pFB54, which contain a 6.5 kb SalI DNA fragment from pFB51 recloned into pACYC184 in opposite orientations, complement glnA- mutations but not the GlnR- phenotype of KP5060. Plasmids pFB514 and pFB53 were mutagenized by transposon Tn5 resulting in a total of 92 Tn5 insertions in the cloned fragments. Utilizing these insertion mutations, a correlated physical and genetic map was constructed by determining the physical location of each Tn5 insertion and by analyzing the ability of each Tn5 mutated plasmid to complement a glnA- strain of E. coli and a glnA- GlnR- strain of K. pneumoniae. Two classes of Tn5 insertions with an altered Gln phenotpye were obtained. One cluster of insertions spanning a 1.3 kb region abolished complementation of the glnA- mutations. A second 2 kb cluster of Tn5 insertions, immediately adjacent to the first cluster, abolished the ability of pFB514 plasmid to complement the GlnR- phenotype, while glnA- complementation was unaffected. We propose that the second cluster of Tn5 insertions define a DNA region coding for a positive regulatory factor for nitrogen fixation (nif) and histidine utilization (hut) genes (glnR). More... »

PAGES

289-297

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00270631

DOI

http://dx.doi.org/10.1007/bf00270631

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045836499

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/6120440


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Transposable Elements", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Recombinant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Regulator", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glutamate-Ammonia Ligase", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Histidine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Klebsiella pneumoniae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nitrogen Fixation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plasmids", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cellular and Developmental Group, Biology Department, Harvard University, 16 Divinity Ave., 02138, Cambridge, Mass, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Cellular and Developmental Group, Biology Department, Harvard University, 16 Divinity Ave., 02138, Cambridge, Mass, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Bruijn", 
        "givenName": "F. J.", 
        "id": "sg:person.01040464547.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040464547.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cellular and Developmental Group, Biology Department, Harvard University, 16 Divinity Ave., 02138, Cambridge, Mass, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Cellular and Developmental Group, Biology Department, Harvard University, 16 Divinity Ave., 02138, Cambridge, Mass, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ausubel", 
        "givenName": "F. M.", 
        "id": "sg:person.01344062015.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344062015.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/289085a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010175313", 
          "https://doi.org/10.1038/289085a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00271959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006613125", 
          "https://doi.org/10.1007/bf00271959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00267366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006139561", 
          "https://doi.org/10.1007/bf00267366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00433306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046705218", 
          "https://doi.org/10.1007/bf00433306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00267858", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012924575", 
          "https://doi.org/10.1007/bf00267858"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1981-10", 
    "datePublishedReg": "1981-10-01", 
    "description": "A 15 kilobase HindIII fragment of Klebsiella pneumoniae DNA containing the glnA gene was cloned into the plasmid vector pACYC184. The resulting plasmid, pFB51, complements glnA- mutations in Escherichia coli and K. pneumoniae. pFB51 also complements the GlnR phenotype of a Klebsiella pneumoniae gln regulatory mutant (KP5060) defined by the restoration of Hut+ and Nif+ (histidine utilization and nitrogen fixation) phenotypes to this strain. Three recombinant plasmids containing subsegments of the 15 kb HindIII fragment were derived from pFB51. Plasmid pFB514 which contains a spontaneous 4 kb delection of K. pneumoniae DNA from pFB51 is more stable than pFB51 and is still able to complement glnA- mutations and the GlnR- phenotype of KP5060. Plasmids pFB53 and pFB54, which contain a 6.5 kb SalI DNA fragment from pFB51 recloned into pACYC184 in opposite orientations, complement glnA- mutations but not the GlnR- phenotype of KP5060. Plasmids pFB514 and pFB53 were mutagenized by transposon Tn5 resulting in a total of 92 Tn5 insertions in the cloned fragments. Utilizing these insertion mutations, a correlated physical and genetic map was constructed by determining the physical location of each Tn5 insertion and by analyzing the ability of each Tn5 mutated plasmid to complement a glnA- strain of E. coli and a glnA- GlnR- strain of K. pneumoniae. Two classes of Tn5 insertions with an altered Gln phenotpye were obtained. One cluster of insertions spanning a 1.3 kb region abolished complementation of the glnA- mutations. A second 2 kb cluster of Tn5 insertions, immediately adjacent to the first cluster, abolished the ability of pFB514 plasmid to complement the GlnR- phenotype, while glnA- complementation was unaffected. We propose that the second cluster of Tn5 insertions define a DNA region coding for a positive regulatory factor for nitrogen fixation (nif) and histidine utilization (hut) genes (glnR).", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00270631", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297380", 
        "issn": [
          "1617-4615", 
          "1432-1874"
        ], 
        "name": "Molecular Genetics and Genomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "183"
      }
    ], 
    "keywords": [
      "pneumoniae DNA", 
      "K. pneumoniae", 
      "Klebsiella pneumoniae", 
      "pneumoniae", 
      "regulatory factors", 
      "phenotype", 
      "insertion", 
      "genes", 
      "plasmid", 
      "E. coli", 
      "total", 
      "positive regulatory factor", 
      "recombinant plasmid", 
      "fixation", 
      "Escherichia coli", 
      "strains", 
      "mutations", 
      "insertion mutations", 
      "DNA", 
      "glnA mutations", 
      "coli", 
      "subsegments", 
      "Tn5 insertion", 
      "ability", 
      "factors", 
      "fragments", 
      "restoration", 
      "first cluster", 
      "delection", 
      "regulation", 
      "second cluster", 
      "HindIII fragment", 
      "region", 
      "histidine utilization genes", 
      "identification", 
      "plasmid vector pACYC184", 
      "kb HindIII fragment", 
      "transposon Tn5 mutagenesis", 
      "glnA region", 
      "glnA gene", 
      "DNA fragments", 
      "kb cluster", 
      "regulatory mutants", 
      "genetic map", 
      "utilization genes", 
      "hut operon", 
      "kb region", 
      "DNA regions", 
      "Tn5 mutagenesis", 
      "nitrogen fixation", 
      "transposon Tn5", 
      "clusters", 
      "cloning", 
      "opposite orientation", 
      "pACYC184", 
      "mutants", 
      "location", 
      "Tn5", 
      "mutagenesis", 
      "GlnR", 
      "operon", 
      "class", 
      "complementation", 
      "NIF", 
      "physical location", 
      "maps", 
      "orientation"
    ], 
    "name": "The cloning and transposon Tn5 mutagenesis of the glnA region of Klebsiella pneumoniae: Identification of glnR, a gene involved in the regulation of the nif and hut operons", 
    "pagination": "289-297", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045836499"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00270631"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "6120440"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00270631", 
      "https://app.dimensions.ai/details/publication/pub.1045836499"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_173.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00270631"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00270631'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00270631'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00270631'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00270631'


 

This table displays all metadata directly associated to this object as RDF triples.

199 TRIPLES      21 PREDICATES      109 URIs      96 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00270631 schema:about N0b87d0f7d0d44aa8a8a41d463e6becf0
2 N293941ba08394c4bab03a00364b22853
3 N5999edf1bcd24de2bc8b90a584c4dc21
4 N59eb4d9c7c344253808e817fe7767764
5 N6015aecc3b9243fb9655d49999b03118
6 N735e1170bc13400d9ec71a5f392bf817
7 N7ef2ec34e6f142118f1c8dcdef951378
8 N82cad093b3bb47d69a6a856b09bdb24c
9 N84e08b9cc8c04d57ab49cc38b6b13ba3
10 Nc93f678ed3d843af8a4013576bb3f6db
11 Neae3bec02da7405a94165aff5ffba557
12 anzsrc-for:06
13 anzsrc-for:0604
14 schema:author N63389ed3c3fd41b3831e4a843e7b0e3d
15 schema:citation sg:pub.10.1007/bf00267366
16 sg:pub.10.1007/bf00267858
17 sg:pub.10.1007/bf00271959
18 sg:pub.10.1007/bf00433306
19 sg:pub.10.1038/289085a0
20 schema:datePublished 1981-10
21 schema:datePublishedReg 1981-10-01
22 schema:description A 15 kilobase HindIII fragment of Klebsiella pneumoniae DNA containing the glnA gene was cloned into the plasmid vector pACYC184. The resulting plasmid, pFB51, complements glnA- mutations in Escherichia coli and K. pneumoniae. pFB51 also complements the GlnR phenotype of a Klebsiella pneumoniae gln regulatory mutant (KP5060) defined by the restoration of Hut+ and Nif+ (histidine utilization and nitrogen fixation) phenotypes to this strain. Three recombinant plasmids containing subsegments of the 15 kb HindIII fragment were derived from pFB51. Plasmid pFB514 which contains a spontaneous 4 kb delection of K. pneumoniae DNA from pFB51 is more stable than pFB51 and is still able to complement glnA- mutations and the GlnR- phenotype of KP5060. Plasmids pFB53 and pFB54, which contain a 6.5 kb SalI DNA fragment from pFB51 recloned into pACYC184 in opposite orientations, complement glnA- mutations but not the GlnR- phenotype of KP5060. Plasmids pFB514 and pFB53 were mutagenized by transposon Tn5 resulting in a total of 92 Tn5 insertions in the cloned fragments. Utilizing these insertion mutations, a correlated physical and genetic map was constructed by determining the physical location of each Tn5 insertion and by analyzing the ability of each Tn5 mutated plasmid to complement a glnA- strain of E. coli and a glnA- GlnR- strain of K. pneumoniae. Two classes of Tn5 insertions with an altered Gln phenotpye were obtained. One cluster of insertions spanning a 1.3 kb region abolished complementation of the glnA- mutations. A second 2 kb cluster of Tn5 insertions, immediately adjacent to the first cluster, abolished the ability of pFB514 plasmid to complement the GlnR- phenotype, while glnA- complementation was unaffected. We propose that the second cluster of Tn5 insertions define a DNA region coding for a positive regulatory factor for nitrogen fixation (nif) and histidine utilization (hut) genes (glnR).
23 schema:genre article
24 schema:isAccessibleForFree false
25 schema:isPartOf N13f13566e76d4486b9298e632fb38575
26 N83ae171b59354fb298a48a7643fa136b
27 sg:journal.1297380
28 schema:keywords DNA
29 DNA fragments
30 DNA regions
31 E. coli
32 Escherichia coli
33 GlnR
34 HindIII fragment
35 K. pneumoniae
36 Klebsiella pneumoniae
37 NIF
38 Tn5
39 Tn5 insertion
40 Tn5 mutagenesis
41 ability
42 class
43 cloning
44 clusters
45 coli
46 complementation
47 delection
48 factors
49 first cluster
50 fixation
51 fragments
52 genes
53 genetic map
54 glnA gene
55 glnA mutations
56 glnA region
57 histidine utilization genes
58 hut operon
59 identification
60 insertion
61 insertion mutations
62 kb HindIII fragment
63 kb cluster
64 kb region
65 location
66 maps
67 mutagenesis
68 mutants
69 mutations
70 nitrogen fixation
71 operon
72 opposite orientation
73 orientation
74 pACYC184
75 phenotype
76 physical location
77 plasmid
78 plasmid vector pACYC184
79 pneumoniae
80 pneumoniae DNA
81 positive regulatory factor
82 recombinant plasmid
83 region
84 regulation
85 regulatory factors
86 regulatory mutants
87 restoration
88 second cluster
89 strains
90 subsegments
91 total
92 transposon Tn5
93 transposon Tn5 mutagenesis
94 utilization genes
95 schema:name The cloning and transposon Tn5 mutagenesis of the glnA region of Klebsiella pneumoniae: Identification of glnR, a gene involved in the regulation of the nif and hut operons
96 schema:pagination 289-297
97 schema:productId Nbeb64db4f6214f0c9991ca4450e89ea8
98 Nddf1a96988924616ba888dcf7ea2bc7e
99 Nf6ed8e203a564b49a9e2a5a973ec76f7
100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045836499
101 https://doi.org/10.1007/bf00270631
102 schema:sdDatePublished 2022-08-04T16:50
103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
104 schema:sdPublisher Nbdc5d1745c4a458c872378702f113998
105 schema:url https://doi.org/10.1007/bf00270631
106 sgo:license sg:explorer/license/
107 sgo:sdDataset articles
108 rdf:type schema:ScholarlyArticle
109 N0b87d0f7d0d44aa8a8a41d463e6becf0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Histidine
111 rdf:type schema:DefinedTerm
112 N13f13566e76d4486b9298e632fb38575 schema:issueNumber 2
113 rdf:type schema:PublicationIssue
114 N293941ba08394c4bab03a00364b22853 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Nitrogen Fixation
116 rdf:type schema:DefinedTerm
117 N5999edf1bcd24de2bc8b90a584c4dc21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Genes
119 rdf:type schema:DefinedTerm
120 N59eb4d9c7c344253808e817fe7767764 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Plasmids
122 rdf:type schema:DefinedTerm
123 N6015aecc3b9243fb9655d49999b03118 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Genes, Regulator
125 rdf:type schema:DefinedTerm
126 N63389ed3c3fd41b3831e4a843e7b0e3d rdf:first sg:person.01040464547.13
127 rdf:rest Nd6605bea4c48440e821c3ae72932fda7
128 N735e1170bc13400d9ec71a5f392bf817 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Phenotype
130 rdf:type schema:DefinedTerm
131 N7ef2ec34e6f142118f1c8dcdef951378 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name DNA, Recombinant
133 rdf:type schema:DefinedTerm
134 N82cad093b3bb47d69a6a856b09bdb24c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Chromosome Mapping
136 rdf:type schema:DefinedTerm
137 N83ae171b59354fb298a48a7643fa136b schema:volumeNumber 183
138 rdf:type schema:PublicationVolume
139 N84e08b9cc8c04d57ab49cc38b6b13ba3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Glutamate-Ammonia Ligase
141 rdf:type schema:DefinedTerm
142 Nbdc5d1745c4a458c872378702f113998 schema:name Springer Nature - SN SciGraph project
143 rdf:type schema:Organization
144 Nbeb64db4f6214f0c9991ca4450e89ea8 schema:name doi
145 schema:value 10.1007/bf00270631
146 rdf:type schema:PropertyValue
147 Nc93f678ed3d843af8a4013576bb3f6db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Klebsiella pneumoniae
149 rdf:type schema:DefinedTerm
150 Nd6605bea4c48440e821c3ae72932fda7 rdf:first sg:person.01344062015.34
151 rdf:rest rdf:nil
152 Nddf1a96988924616ba888dcf7ea2bc7e schema:name dimensions_id
153 schema:value pub.1045836499
154 rdf:type schema:PropertyValue
155 Neae3bec02da7405a94165aff5ffba557 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name DNA Transposable Elements
157 rdf:type schema:DefinedTerm
158 Nf6ed8e203a564b49a9e2a5a973ec76f7 schema:name pubmed_id
159 schema:value 6120440
160 rdf:type schema:PropertyValue
161 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
162 schema:name Biological Sciences
163 rdf:type schema:DefinedTerm
164 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
165 schema:name Genetics
166 rdf:type schema:DefinedTerm
167 sg:journal.1297380 schema:issn 1432-1874
168 1617-4615
169 schema:name Molecular Genetics and Genomics
170 schema:publisher Springer Nature
171 rdf:type schema:Periodical
172 sg:person.01040464547.13 schema:affiliation grid-institutes:grid.38142.3c
173 schema:familyName de Bruijn
174 schema:givenName F. J.
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040464547.13
176 rdf:type schema:Person
177 sg:person.01344062015.34 schema:affiliation grid-institutes:grid.38142.3c
178 schema:familyName Ausubel
179 schema:givenName F. M.
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344062015.34
181 rdf:type schema:Person
182 sg:pub.10.1007/bf00267366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006139561
183 https://doi.org/10.1007/bf00267366
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/bf00267858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012924575
186 https://doi.org/10.1007/bf00267858
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/bf00271959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006613125
189 https://doi.org/10.1007/bf00271959
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/bf00433306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046705218
192 https://doi.org/10.1007/bf00433306
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/289085a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010175313
195 https://doi.org/10.1038/289085a0
196 rdf:type schema:CreativeWork
197 grid-institutes:grid.38142.3c schema:alternateName Cellular and Developmental Group, Biology Department, Harvard University, 16 Divinity Ave., 02138, Cambridge, Mass, USA
198 schema:name Cellular and Developmental Group, Biology Department, Harvard University, 16 Divinity Ave., 02138, Cambridge, Mass, USA
199 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...