Hochauflösende Gefrierätzung View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1969-06

AUTHORS

L. Bachmann, R. Abermann, H. P. Zingsheim

ABSTRACT

Resolution in freeze-etching is primarily limited by the need for shadowing the replica. In addition to giving high resolution, any technique suitable for freeze-etching must allow short shadowing times, a low thermal load for the specimen, and must provide a final film capable of surviving the drastic chemical procedures used for cleaning the replica.Simultaneous evaporation of platinum and carbon is at present the standard shadowing method in freeze etching. Replicas of higher resolution can in principle be obtained by using very high melting metals such as tungsten or tantalum. Extensive specimen damage caused by long evaporation times and excessive thermal load have however prevented the successful application of such ultrashadowing methods to freeze etching.Since neither long shadowing times nor a high thermal load are properties intrinsic to ultrashadowing, a suitable electron beam evaporator for high melting metals was built and thus ultrashadowing successfully applied to freeze-etching. All parts of the gun are water cooled and can be outgased by electron bombardment. The source can thus be operated reproducibly at high rates and without affecting the vacuum. The actual source (3 mm Ø) is the only hot part of the gun not shielded from the specimen. The ions which are generated during evaporation, and can cause considerable specimen damage, are deflected from the specimen by an electric field. The evaporation is done in 7–10 seconds, the source-specimen distance is 200 mm. For the shadowing material we use a tantalum-tungsten alloy. The resultant films are stable in 70% sulfure acid.At lower magnification freeze-etched specimen which are shadowed with Ta/W look just like Pt/C replicas which indicates that no additional artification took place. High magnification micrographs of ultrashadowed objects show a resolution considerably higher than those of platinum-carbon replicas published in the literature.Since heat damage is a crucial problem in freeze-etching the thermal load for tantalum-tungsten-and platinum-carbon-shadowing was calculated. For both methods a theoretical value of approximately 16 mW·cm−2 was obtained provided the above shadowing conditions are observed and the ions are deflected from the specimen. Furthermore, the calculations show that the load caused by thermal radiation can be reduced drastically, without increasing the shadowing time, if the gun is operated at a higher rate thus allowing the use of either a smaller source or a longer source-specimen distance.Measurements of the thermal load agreed basically with the calculations. The values measured using the tantalum-tungsten gun were about half the ones obtained during platinum-carbon shadowing with a commercial evaporator. More... »

PAGES

133-142

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00268707

DOI

http://dx.doi.org/10.1007/bf00268707

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022286671

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/4901927


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Biochemistry and Metabolomics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1116", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Physiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemical Phenomena", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Freeze Etching", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Freezing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Histological Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Electron", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phosphatidylcholines", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tantalum", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thermodynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tungsten", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Physikalisch Chemisches Institut, Universit\u00e4t Innsbruck, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institut f\u00fcr Technische Chemie, Technische Hochschule M\u00fcnchen, Germany", 
            "Physikalisch Chemisches Institut, Universit\u00e4t Innsbruck, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bachmann", 
        "givenName": "L.", 
        "id": "sg:person.01315772146.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315772146.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physikalisch Chemisches Institut, Universit\u00e4t Innsbruck, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institut f\u00fcr Technische Chemie, Technische Hochschule M\u00fcnchen, Germany", 
            "Physikalisch Chemisches Institut, Universit\u00e4t Innsbruck, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abermann", 
        "givenName": "R.", 
        "id": "sg:person.015160162133.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015160162133.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physikalisch Chemisches Institut, Universit\u00e4t Innsbruck, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institut f\u00fcr Technische Chemie, Technische Hochschule M\u00fcnchen, Germany", 
            "Physikalisch Chemisches Institut, Universit\u00e4t Innsbruck, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zingsheim", 
        "givenName": "H. P.", 
        "id": "sg:person.0106622171.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0106622171.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00602168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031885351", 
          "https://doi.org/10.1007/bf00602168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00622982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045795307", 
          "https://doi.org/10.1007/bf00622982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00622703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048275640", 
          "https://doi.org/10.1007/bf00622703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00338850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010646526", 
          "https://doi.org/10.1007/bf00338850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00640126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003047486", 
          "https://doi.org/10.1007/bf00640126"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1969-06", 
    "datePublishedReg": "1969-06-01", 
    "description": "Resolution in freeze-etching is primarily limited by the need for shadowing the replica. In addition to giving high resolution, any technique suitable for freeze-etching must allow short shadowing times, a low thermal load for the specimen, and must provide a final film capable of surviving the drastic chemical procedures used for cleaning the replica.Simultaneous evaporation of platinum and carbon is at present the standard shadowing method in freeze etching. Replicas of higher resolution can in principle be obtained by using very high melting metals such as tungsten or tantalum. Extensive specimen damage caused by long evaporation times and excessive thermal load have however prevented the successful application of such ultrashadowing methods to freeze etching.Since neither long shadowing times nor a high thermal load are properties intrinsic to ultrashadowing, a suitable electron beam evaporator for high melting metals was built and thus ultrashadowing successfully applied to freeze-etching. All parts of the gun are water cooled and can be outgased by electron bombardment. The source can thus be operated reproducibly at high rates and without affecting the vacuum. The actual source (3 mm \u00d8) is the only hot part of the gun not shielded from the specimen. The ions which are generated during evaporation, and can cause considerable specimen damage, are deflected from the specimen by an electric field. The evaporation is done in 7\u201310 seconds, the source-specimen distance is 200 mm. For the shadowing material we use a tantalum-tungsten alloy. The resultant films are stable in 70% sulfure acid.At lower magnification freeze-etched specimen which are shadowed with Ta/W look just like Pt/C replicas which indicates that no additional artification took place. High magnification micrographs of ultrashadowed objects show a resolution considerably higher than those of platinum-carbon replicas published in the literature.Since heat damage is a crucial problem in freeze-etching the thermal load for tantalum-tungsten-and platinum-carbon-shadowing was calculated. For both methods a theoretical value of approximately 16 mW\u00b7cm\u22122 was obtained provided the above shadowing conditions are observed and the ions are deflected from the specimen. Furthermore, the calculations show that the load caused by thermal radiation can be reduced drastically, without increasing the shadowing time, if the gun is operated at a higher rate thus allowing the use of either a smaller source or a longer source-specimen distance.Measurements of the thermal load agreed basically with the calculations. The values measured using the tantalum-tungsten gun were about half the ones obtained during platinum-carbon shadowing with a commercial evaporator.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00268707", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294817", 
        "issn": [
          "0948-6143", 
          "1432-119X"
        ], 
        "name": "Histochemistry and Cell Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "keywords": [
      "specimen damage", 
      "electron beam evaporator", 
      "platinum-carbon replicas", 
      "high melting metals", 
      "beam evaporator", 
      "electron bombardment", 
      "high resolution", 
      "excessive thermal loads", 
      "electric field", 
      "simultaneous evaporation", 
      "thermal radiation", 
      "small source", 
      "gun", 
      "resultant films", 
      "low thermal load", 
      "Pt/C replicas", 
      "high thermal loads", 
      "theoretical values", 
      "ions", 
      "thermal load", 
      "evaporation", 
      "resolution", 
      "films", 
      "evaporation time", 
      "calculations", 
      "freeze etching", 
      "bombardment", 
      "longer evaporation time", 
      "radiation", 
      "vacuum", 
      "etching", 
      "final film", 
      "shadowing method", 
      "source", 
      "tungsten", 
      "Ta/W", 
      "distance", 
      "chemical procedures", 
      "field", 
      "tantalum", 
      "measurements", 
      "replicas", 
      "metals", 
      "micrographs", 
      "hottest part", 
      "specimen", 
      "shadowing", 
      "properties", 
      "actual source", 
      "objects", 
      "successful application", 
      "alloy", 
      "seconds", 
      "time", 
      "materials", 
      "technique", 
      "method", 
      "applications", 
      "carbon", 
      "values", 
      "heat damage", 
      "evaporator", 
      "platinum", 
      "principles", 
      "crucial problem", 
      "damage", 
      "one", 
      "part", 
      "rate", 
      "conditions", 
      "place", 
      "addition", 
      "water", 
      "use", 
      "problem", 
      "procedure", 
      "load", 
      "need", 
      "literature", 
      "acid", 
      "high rate", 
      "tantalum-tungsten alloys", 
      "commercial evaporator", 
      "short shadowing times", 
      "shadowing times", 
      "drastic chemical procedures", 
      "standard shadowing method", 
      "melting metals", 
      "Extensive specimen damage", 
      "such ultrashadowing methods", 
      "ultrashadowing methods", 
      "ultrashadowing", 
      "suitable electron beam evaporator", 
      "only hot part", 
      "considerable specimen damage", 
      "source-specimen distance", 
      "sulfure acid", 
      "lower magnification freeze-etched specimen", 
      "magnification freeze-etched specimen", 
      "freeze-etched specimen", 
      "C replicas", 
      "additional artification", 
      "artification", 
      "High magnification micrographs", 
      "magnification micrographs", 
      "ultrashadowed objects", 
      "tantalum-tungsten", 
      "longer source-specimen distance", 
      "tantalum-tungsten gun", 
      "Hochaufl\u00f6sende Gefrier\u00e4tzung", 
      "Gefrier\u00e4tzung"
    ], 
    "name": "Hochaufl\u00f6sende Gefrier\u00e4tzung", 
    "pagination": "133-142", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022286671"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00268707"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "4901927"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00268707", 
      "https://app.dimensions.ai/details/publication/pub.1022286671"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_82.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00268707"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00268707'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00268707'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00268707'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00268707'


 

This table displays all metadata directly associated to this object as RDF triples.

267 TRIPLES      21 PREDICATES      156 URIs      140 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00268707 schema:about N0b7dceec7bc44c988f6cd3de599a189e
2 N18197796ec084e7ab66ee7a6d499faa6
3 N2de91cec816d470281a1fce85d79bc5a
4 N30e7ff0ecbe44b40ae60d57c9edd9717
5 N32238f0f387442f9a5d404f3b4f6d103
6 N45fc2b81eb074ba9a2a4d6346300f235
7 N4d8e25cda70e46a99787190bb8826e1f
8 N4dff01d8f8904f7f8e01098c4076edd5
9 Na1a313b8a7984564bc49e325c915acf2
10 Naac4705bf6214f258d715d591747c98a
11 Ndf8bcffbd6da40748b5ccb11e0c63bea
12 Nf7fc92d56b534b738d76cd78c08de82f
13 anzsrc-for:06
14 anzsrc-for:0601
15 anzsrc-for:11
16 anzsrc-for:1101
17 anzsrc-for:1116
18 schema:author N439ea07b364c46b3aae5e038b13c0877
19 schema:citation sg:pub.10.1007/bf00338850
20 sg:pub.10.1007/bf00602168
21 sg:pub.10.1007/bf00622703
22 sg:pub.10.1007/bf00622982
23 sg:pub.10.1007/bf00640126
24 schema:datePublished 1969-06
25 schema:datePublishedReg 1969-06-01
26 schema:description Resolution in freeze-etching is primarily limited by the need for shadowing the replica. In addition to giving high resolution, any technique suitable for freeze-etching must allow short shadowing times, a low thermal load for the specimen, and must provide a final film capable of surviving the drastic chemical procedures used for cleaning the replica.Simultaneous evaporation of platinum and carbon is at present the standard shadowing method in freeze etching. Replicas of higher resolution can in principle be obtained by using very high melting metals such as tungsten or tantalum. Extensive specimen damage caused by long evaporation times and excessive thermal load have however prevented the successful application of such ultrashadowing methods to freeze etching.Since neither long shadowing times nor a high thermal load are properties intrinsic to ultrashadowing, a suitable electron beam evaporator for high melting metals was built and thus ultrashadowing successfully applied to freeze-etching. All parts of the gun are water cooled and can be outgased by electron bombardment. The source can thus be operated reproducibly at high rates and without affecting the vacuum. The actual source (3 mm Ø) is the only hot part of the gun not shielded from the specimen. The ions which are generated during evaporation, and can cause considerable specimen damage, are deflected from the specimen by an electric field. The evaporation is done in 7–10 seconds, the source-specimen distance is 200 mm. For the shadowing material we use a tantalum-tungsten alloy. The resultant films are stable in 70% sulfure acid.At lower magnification freeze-etched specimen which are shadowed with Ta/W look just like Pt/C replicas which indicates that no additional artification took place. High magnification micrographs of ultrashadowed objects show a resolution considerably higher than those of platinum-carbon replicas published in the literature.Since heat damage is a crucial problem in freeze-etching the thermal load for tantalum-tungsten-and platinum-carbon-shadowing was calculated. For both methods a theoretical value of approximately 16 mW·cm−2 was obtained provided the above shadowing conditions are observed and the ions are deflected from the specimen. Furthermore, the calculations show that the load caused by thermal radiation can be reduced drastically, without increasing the shadowing time, if the gun is operated at a higher rate thus allowing the use of either a smaller source or a longer source-specimen distance.Measurements of the thermal load agreed basically with the calculations. The values measured using the tantalum-tungsten gun were about half the ones obtained during platinum-carbon shadowing with a commercial evaporator.
27 schema:genre article
28 schema:isAccessibleForFree false
29 schema:isPartOf N3ebddbba7d8343f081447cd7e0e5e4a2
30 N926f876127b34f6a904b20b79d44e0fe
31 sg:journal.1294817
32 schema:keywords C replicas
33 Extensive specimen damage
34 Gefrierätzung
35 High magnification micrographs
36 Hochauflösende Gefrierätzung
37 Pt/C replicas
38 Ta/W
39 acid
40 actual source
41 addition
42 additional artification
43 alloy
44 applications
45 artification
46 beam evaporator
47 bombardment
48 calculations
49 carbon
50 chemical procedures
51 commercial evaporator
52 conditions
53 considerable specimen damage
54 crucial problem
55 damage
56 distance
57 drastic chemical procedures
58 electric field
59 electron beam evaporator
60 electron bombardment
61 etching
62 evaporation
63 evaporation time
64 evaporator
65 excessive thermal loads
66 field
67 films
68 final film
69 freeze etching
70 freeze-etched specimen
71 gun
72 heat damage
73 high melting metals
74 high rate
75 high resolution
76 high thermal loads
77 hottest part
78 ions
79 literature
80 load
81 longer evaporation time
82 longer source-specimen distance
83 low thermal load
84 lower magnification freeze-etched specimen
85 magnification freeze-etched specimen
86 magnification micrographs
87 materials
88 measurements
89 melting metals
90 metals
91 method
92 micrographs
93 need
94 objects
95 one
96 only hot part
97 part
98 place
99 platinum
100 platinum-carbon replicas
101 principles
102 problem
103 procedure
104 properties
105 radiation
106 rate
107 replicas
108 resolution
109 resultant films
110 seconds
111 shadowing
112 shadowing method
113 shadowing times
114 short shadowing times
115 simultaneous evaporation
116 small source
117 source
118 source-specimen distance
119 specimen
120 specimen damage
121 standard shadowing method
122 successful application
123 such ultrashadowing methods
124 suitable electron beam evaporator
125 sulfure acid
126 tantalum
127 tantalum-tungsten
128 tantalum-tungsten alloys
129 tantalum-tungsten gun
130 technique
131 theoretical values
132 thermal load
133 thermal radiation
134 time
135 tungsten
136 ultrashadowed objects
137 ultrashadowing
138 ultrashadowing methods
139 use
140 vacuum
141 values
142 water
143 schema:name Hochauflösende Gefrierätzung
144 schema:pagination 133-142
145 schema:productId N1affcfe7b7a84c569da585e8a83d46b4
146 N7f59233390874a7fb16683c23b2f9679
147 Nca99b03e708c4fe9a3ad98506281cb42
148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022286671
149 https://doi.org/10.1007/bf00268707
150 schema:sdDatePublished 2021-12-01T19:46
151 schema:sdLicense https://scigraph.springernature.com/explorer/license/
152 schema:sdPublisher N437e44adba344d39b8e7bacb1127fe1d
153 schema:url https://doi.org/10.1007/bf00268707
154 sgo:license sg:explorer/license/
155 sgo:sdDataset articles
156 rdf:type schema:ScholarlyArticle
157 N0b7dceec7bc44c988f6cd3de599a189e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Histological Techniques
159 rdf:type schema:DefinedTerm
160 N18197796ec084e7ab66ee7a6d499faa6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Freeze Etching
162 rdf:type schema:DefinedTerm
163 N1affcfe7b7a84c569da585e8a83d46b4 schema:name pubmed_id
164 schema:value 4901927
165 rdf:type schema:PropertyValue
166 N231b0e54f2b948ac87f69946fb4b6e03 rdf:first sg:person.0106622171.42
167 rdf:rest rdf:nil
168 N2de91cec816d470281a1fce85d79bc5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Tantalum
170 rdf:type schema:DefinedTerm
171 N30e7ff0ecbe44b40ae60d57c9edd9717 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Chemical Phenomena
173 rdf:type schema:DefinedTerm
174 N32238f0f387442f9a5d404f3b4f6d103 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Phosphatidylcholines
176 rdf:type schema:DefinedTerm
177 N3ebddbba7d8343f081447cd7e0e5e4a2 schema:issueNumber 2
178 rdf:type schema:PublicationIssue
179 N437e44adba344d39b8e7bacb1127fe1d schema:name Springer Nature - SN SciGraph project
180 rdf:type schema:Organization
181 N439ea07b364c46b3aae5e038b13c0877 rdf:first sg:person.01315772146.27
182 rdf:rest N61e9748b7f2a44dcab016acf1dc59b29
183 N45fc2b81eb074ba9a2a4d6346300f235 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Chemistry
185 rdf:type schema:DefinedTerm
186 N4d8e25cda70e46a99787190bb8826e1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Microscopy, Electron
188 rdf:type schema:DefinedTerm
189 N4dff01d8f8904f7f8e01098c4076edd5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Saccharomyces
191 rdf:type schema:DefinedTerm
192 N61e9748b7f2a44dcab016acf1dc59b29 rdf:first sg:person.015160162133.59
193 rdf:rest N231b0e54f2b948ac87f69946fb4b6e03
194 N7f59233390874a7fb16683c23b2f9679 schema:name dimensions_id
195 schema:value pub.1022286671
196 rdf:type schema:PropertyValue
197 N926f876127b34f6a904b20b79d44e0fe schema:volumeNumber 20
198 rdf:type schema:PublicationVolume
199 Na1a313b8a7984564bc49e325c915acf2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Freezing
201 rdf:type schema:DefinedTerm
202 Naac4705bf6214f258d715d591747c98a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Thermodynamics
204 rdf:type schema:DefinedTerm
205 Nca99b03e708c4fe9a3ad98506281cb42 schema:name doi
206 schema:value 10.1007/bf00268707
207 rdf:type schema:PropertyValue
208 Ndf8bcffbd6da40748b5ccb11e0c63bea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
209 schema:name Tungsten
210 rdf:type schema:DefinedTerm
211 Nf7fc92d56b534b738d76cd78c08de82f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
212 schema:name Mathematics
213 rdf:type schema:DefinedTerm
214 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
215 schema:name Biological Sciences
216 rdf:type schema:DefinedTerm
217 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
218 schema:name Biochemistry and Cell Biology
219 rdf:type schema:DefinedTerm
220 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
221 schema:name Medical and Health Sciences
222 rdf:type schema:DefinedTerm
223 anzsrc-for:1101 schema:inDefinedTermSet anzsrc-for:
224 schema:name Medical Biochemistry and Metabolomics
225 rdf:type schema:DefinedTerm
226 anzsrc-for:1116 schema:inDefinedTermSet anzsrc-for:
227 schema:name Medical Physiology
228 rdf:type schema:DefinedTerm
229 sg:journal.1294817 schema:issn 0948-6143
230 1432-119X
231 schema:name Histochemistry and Cell Biology
232 schema:publisher Springer Nature
233 rdf:type schema:Periodical
234 sg:person.0106622171.42 schema:affiliation grid-institutes:None
235 schema:familyName Zingsheim
236 schema:givenName H. P.
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0106622171.42
238 rdf:type schema:Person
239 sg:person.01315772146.27 schema:affiliation grid-institutes:None
240 schema:familyName Bachmann
241 schema:givenName L.
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315772146.27
243 rdf:type schema:Person
244 sg:person.015160162133.59 schema:affiliation grid-institutes:None
245 schema:familyName Abermann
246 schema:givenName R.
247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015160162133.59
248 rdf:type schema:Person
249 sg:pub.10.1007/bf00338850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010646526
250 https://doi.org/10.1007/bf00338850
251 rdf:type schema:CreativeWork
252 sg:pub.10.1007/bf00602168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031885351
253 https://doi.org/10.1007/bf00602168
254 rdf:type schema:CreativeWork
255 sg:pub.10.1007/bf00622703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048275640
256 https://doi.org/10.1007/bf00622703
257 rdf:type schema:CreativeWork
258 sg:pub.10.1007/bf00622982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045795307
259 https://doi.org/10.1007/bf00622982
260 rdf:type schema:CreativeWork
261 sg:pub.10.1007/bf00640126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003047486
262 https://doi.org/10.1007/bf00640126
263 rdf:type schema:CreativeWork
264 grid-institutes:None schema:alternateName Physikalisch Chemisches Institut, Universität Innsbruck, Germany
265 schema:name Institut für Technische Chemie, Technische Hochschule München, Germany
266 Physikalisch Chemisches Institut, Universität Innsbruck, Germany
267 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...