Repair of MMS-induced DNA double-strand breaks in haploid cells of Saccharomyces cerevisiae, which requires the presence of a duplicate genome View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1979-01

AUTHORS

E. Chlebowicz, W. J. Jachymczyk

ABSTRACT

The formation and repair of double-strand breaks induced in DNA by MMS was studied in haploid wild type and MMS-sensitive rad6 mutant strains of Saccharomyces cerevisiae with the use of the neutral and alkaline sucrose sedimentation technique. A similar decrease in average molecular weight of double-stranded DNA from 5–6x108 to 1–0.7x108 daltons was observed following treatment with 0.5% MMS in wild type and mutant strains. Incubation of cells after MMS treatment in a fresh drug-free growing medium resulted in repair of double-strand breaks in the wild type strain, but only in the exponential phase of growth. No repair of double-strand breaks was found when cells of the wild type strain were synchronized in G-1 phase by treatment with α factor, although DNA single-strand breaks were still efficiently repaired. Mutant rad6 which has a very low ability to repair MMS-induced single-strand breaks, did not repair double-strand breaks regardless of the phase of growth.These results suggest that (1) repair of double-strand breaks requires the ability for single-strand breaks repair, (2) rejoining of double-strand breaks requires the availability of two homologous DNA molecules, this strongly supports the recombinational model of DNA repair. More... »

PAGES

279-286

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00267420

DOI

http://dx.doi.org/10.1007/bf00267420

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035325125

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/368592


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Repair", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Haploidy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Methyl Methanesulfonate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutagens", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Recombination, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Rakowiecka 36, 02-532, Warsaw, Poland", 
          "id": "http://www.grid.ac/institutes/grid.418825.2", 
          "name": [
            "Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Rakowiecka 36, 02-532, Warsaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chlebowicz", 
        "givenName": "E.", 
        "id": "sg:person.056644245.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.056644245.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Rakowiecka 36, 02-532, Warsaw, Poland", 
          "id": "http://www.grid.ac/institutes/grid.418825.2", 
          "name": [
            "Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Rakowiecka 36, 02-532, Warsaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jachymczyk", 
        "givenName": "W. J.", 
        "id": "sg:person.047521532.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.047521532.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00266917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021789996", 
          "https://doi.org/10.1007/bf00266917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00385981", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013793306", 
          "https://doi.org/10.1007/bf00385981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00808385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010435858", 
          "https://doi.org/10.1007/bf00808385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/269829a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034421803", 
          "https://doi.org/10.1038/269829a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00888947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010639951", 
          "https://doi.org/10.1007/bf00888947"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1979-01", 
    "datePublishedReg": "1979-01-01", 
    "description": "The formation and repair of double-strand breaks induced in DNA by MMS was studied in haploid wild type and MMS-sensitive rad6 mutant strains of Saccharomyces cerevisiae with the use of the neutral and alkaline sucrose sedimentation technique. A similar decrease in average molecular weight of double-stranded DNA from 5\u20136x108 to 1\u20130.7x108 daltons was observed following treatment with 0.5% MMS in wild type and mutant strains. Incubation of cells after MMS treatment in a fresh drug-free growing medium resulted in repair of double-strand breaks in the wild type strain, but only in the exponential phase of growth. No repair of double-strand breaks was found when cells of the wild type strain were synchronized in G-1 phase by treatment with \u03b1 factor, although DNA single-strand breaks were still efficiently repaired. Mutant rad6 which has a very low ability to repair MMS-induced single-strand breaks, did not repair double-strand breaks regardless of the phase of growth.These results suggest that (1) repair of double-strand breaks requires the ability for single-strand breaks repair, (2) rejoining of double-strand breaks requires the availability of two homologous DNA molecules, this strongly supports the recombinational model of DNA repair.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00267420", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297380", 
        "issn": [
          "1617-4615", 
          "1432-1874"
        ], 
        "name": "Molecular Genetics and Genomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "167"
      }
    ], 
    "keywords": [
      "single-strand breaks", 
      "DNA single-strand breaks", 
      "incubation of cells", 
      "similar decrease", 
      "repair", 
      "treatment", 
      "double-strand breaks", 
      "sedimentation technique", 
      "cells", 
      "single-strand break repair", 
      "wild-type strain", 
      "wild type", 
      "MMS treatment", 
      "DNA double-strand breaks", 
      "DNA repair", 
      "type strain", 
      "mutant strain", 
      "strains", 
      "homologous DNA molecules", 
      "low ability", 
      "break repair", 
      "DNA", 
      "repair of MMS", 
      "incubation", 
      "haploid cells", 
      "Saccharomyces cerevisiae", 
      "ability", 
      "recombinational model", 
      "factors", 
      "decrease", 
      "duplicate genome", 
      "weight", 
      "phases of growth", 
      "types", 
      "DNA molecules", 
      "exponential phase", 
      "MMS", 
      "daltons", 
      "presence", 
      "growth", 
      "use", 
      "breaks", 
      "molecular weight", 
      "RAD6", 
      "genome", 
      "Saccharomyces", 
      "cerevisiae", 
      "phase", 
      "results", 
      "availability", 
      "molecules", 
      "technique", 
      "medium", 
      "model", 
      "formation", 
      "average molecular weight", 
      "alkaline"
    ], 
    "name": "Repair of MMS-induced DNA double-strand breaks in haploid cells of Saccharomyces cerevisiae, which requires the presence of a duplicate genome", 
    "pagination": "279-286", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035325125"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00267420"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "368592"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00267420", 
      "https://app.dimensions.ai/details/publication/pub.1035325125"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_111.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00267420"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00267420'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00267420'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00267420'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00267420'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      21 PREDICATES      97 URIs      83 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00267420 schema:about N3c8dbbc991fb47ce9b1dc02d1f236551
2 N56a10199c2f2419baabf23c21879a5dc
3 N5fa90a787cf24b499a93d26ebe9f5877
4 N73152c09bc26423fb26aa5b569dbe85e
5 N7ff14923a73447f8afa1c061a9fce973
6 Na1266e4aacd44c5db238ca1aaaad9ae4
7 Nd0e95cbcc8d545c79fd2647827c00adb
8 Nfc413a146518489699a838a45637018b
9 anzsrc-for:06
10 anzsrc-for:0601
11 anzsrc-for:0604
12 schema:author Nbf3af96d70dd416f8a49480990816e45
13 schema:citation sg:pub.10.1007/bf00266917
14 sg:pub.10.1007/bf00385981
15 sg:pub.10.1007/bf00808385
16 sg:pub.10.1007/bf00888947
17 sg:pub.10.1038/269829a0
18 schema:datePublished 1979-01
19 schema:datePublishedReg 1979-01-01
20 schema:description The formation and repair of double-strand breaks induced in DNA by MMS was studied in haploid wild type and MMS-sensitive rad6 mutant strains of Saccharomyces cerevisiae with the use of the neutral and alkaline sucrose sedimentation technique. A similar decrease in average molecular weight of double-stranded DNA from 5–6x108 to 1–0.7x108 daltons was observed following treatment with 0.5% MMS in wild type and mutant strains. Incubation of cells after MMS treatment in a fresh drug-free growing medium resulted in repair of double-strand breaks in the wild type strain, but only in the exponential phase of growth. No repair of double-strand breaks was found when cells of the wild type strain were synchronized in G-1 phase by treatment with α factor, although DNA single-strand breaks were still efficiently repaired. Mutant rad6 which has a very low ability to repair MMS-induced single-strand breaks, did not repair double-strand breaks regardless of the phase of growth.These results suggest that (1) repair of double-strand breaks requires the ability for single-strand breaks repair, (2) rejoining of double-strand breaks requires the availability of two homologous DNA molecules, this strongly supports the recombinational model of DNA repair.
21 schema:genre article
22 schema:isAccessibleForFree false
23 schema:isPartOf N75c94ba8dff3429a997fed5d3d7fdb52
24 Nb5b8b27356cb492f914fe11edbad312f
25 sg:journal.1297380
26 schema:keywords DNA
27 DNA double-strand breaks
28 DNA molecules
29 DNA repair
30 DNA single-strand breaks
31 MMS
32 MMS treatment
33 RAD6
34 Saccharomyces
35 Saccharomyces cerevisiae
36 ability
37 alkaline
38 availability
39 average molecular weight
40 break repair
41 breaks
42 cells
43 cerevisiae
44 daltons
45 decrease
46 double-strand breaks
47 duplicate genome
48 exponential phase
49 factors
50 formation
51 genome
52 growth
53 haploid cells
54 homologous DNA molecules
55 incubation
56 incubation of cells
57 low ability
58 medium
59 model
60 molecular weight
61 molecules
62 mutant strain
63 phase
64 phases of growth
65 presence
66 recombinational model
67 repair
68 repair of MMS
69 results
70 sedimentation technique
71 similar decrease
72 single-strand break repair
73 single-strand breaks
74 strains
75 technique
76 treatment
77 type strain
78 types
79 use
80 weight
81 wild type
82 wild-type strain
83 schema:name Repair of MMS-induced DNA double-strand breaks in haploid cells of Saccharomyces cerevisiae, which requires the presence of a duplicate genome
84 schema:pagination 279-286
85 schema:productId N77792e1aaa1d426ca808d9d70dbf2fb6
86 Nde51bbce976943b69d4ab9e91160d447
87 Ne205eaa22ada42b18db18ec39d98c1c8
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035325125
89 https://doi.org/10.1007/bf00267420
90 schema:sdDatePublished 2022-09-02T15:44
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher N21e00bf521c644688a3627aecc6128cd
93 schema:url https://doi.org/10.1007/bf00267420
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N21e00bf521c644688a3627aecc6128cd schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N3c8dbbc991fb47ce9b1dc02d1f236551 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Methyl Methanesulfonate
101 rdf:type schema:DefinedTerm
102 N56a10199c2f2419baabf23c21879a5dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Phenotype
104 rdf:type schema:DefinedTerm
105 N5fa90a787cf24b499a93d26ebe9f5877 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Mutation
107 rdf:type schema:DefinedTerm
108 N73152c09bc26423fb26aa5b569dbe85e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Haploidy
110 rdf:type schema:DefinedTerm
111 N75c94ba8dff3429a997fed5d3d7fdb52 schema:volumeNumber 167
112 rdf:type schema:PublicationVolume
113 N77792e1aaa1d426ca808d9d70dbf2fb6 schema:name pubmed_id
114 schema:value 368592
115 rdf:type schema:PropertyValue
116 N7ff14923a73447f8afa1c061a9fce973 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name DNA Repair
118 rdf:type schema:DefinedTerm
119 N81bc29b89e244415896c6ee0f1ddfdd5 rdf:first sg:person.047521532.50
120 rdf:rest rdf:nil
121 Na1266e4aacd44c5db238ca1aaaad9ae4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Mutagens
123 rdf:type schema:DefinedTerm
124 Nb5b8b27356cb492f914fe11edbad312f schema:issueNumber 3
125 rdf:type schema:PublicationIssue
126 Nbf3af96d70dd416f8a49480990816e45 rdf:first sg:person.056644245.81
127 rdf:rest N81bc29b89e244415896c6ee0f1ddfdd5
128 Nd0e95cbcc8d545c79fd2647827c00adb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Recombination, Genetic
130 rdf:type schema:DefinedTerm
131 Nde51bbce976943b69d4ab9e91160d447 schema:name dimensions_id
132 schema:value pub.1035325125
133 rdf:type schema:PropertyValue
134 Ne205eaa22ada42b18db18ec39d98c1c8 schema:name doi
135 schema:value 10.1007/bf00267420
136 rdf:type schema:PropertyValue
137 Nfc413a146518489699a838a45637018b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Saccharomyces cerevisiae
139 rdf:type schema:DefinedTerm
140 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
141 schema:name Biological Sciences
142 rdf:type schema:DefinedTerm
143 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
144 schema:name Biochemistry and Cell Biology
145 rdf:type schema:DefinedTerm
146 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
147 schema:name Genetics
148 rdf:type schema:DefinedTerm
149 sg:journal.1297380 schema:issn 1432-1874
150 1617-4615
151 schema:name Molecular Genetics and Genomics
152 schema:publisher Springer Nature
153 rdf:type schema:Periodical
154 sg:person.047521532.50 schema:affiliation grid-institutes:grid.418825.2
155 schema:familyName Jachymczyk
156 schema:givenName W. J.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.047521532.50
158 rdf:type schema:Person
159 sg:person.056644245.81 schema:affiliation grid-institutes:grid.418825.2
160 schema:familyName Chlebowicz
161 schema:givenName E.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.056644245.81
163 rdf:type schema:Person
164 sg:pub.10.1007/bf00266917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021789996
165 https://doi.org/10.1007/bf00266917
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/bf00385981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013793306
168 https://doi.org/10.1007/bf00385981
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/bf00808385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010435858
171 https://doi.org/10.1007/bf00808385
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/bf00888947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010639951
174 https://doi.org/10.1007/bf00888947
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/269829a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034421803
177 https://doi.org/10.1038/269829a0
178 rdf:type schema:CreativeWork
179 grid-institutes:grid.418825.2 schema:alternateName Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Rakowiecka 36, 02-532, Warsaw, Poland
180 schema:name Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Rakowiecka 36, 02-532, Warsaw, Poland
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...