Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-05

AUTHORS

K. M. Song, T. C. Osborn, P. H. Williams

ABSTRACT

Restriction fragment length polymorphisms (RFLPs) of nuclear DNAs have been used to explore the origin and evolution of the six cultivated Brassica species. Extensive RFLP variation was found at the species, subspecies and variety levels. Based on RFLP data from Brassica and related genera, a detailed phylogenetic tree was generated using the PAUP microcomputer program, which permits a quantitative analysis of the interrelationships among Brassica species. The results suggested that 1) B. nigra originated from one evolutionary pathway with Sinapis arvensis or a close relative as the likely progenitor, whereas B. campestris and B. oleracea came from another pathway with a possible common ancestor in wild B. oleracea or a closely related nine chromosome species; 2) the amphidiploid species B. napus and B. juncea have evolved through different combinations of the diploid morphotypes and thus polyphyletic origins may be a common mechanism for the natural occurrence of amphidiploids in Brassica; 3) the cytoplasm has played an important role in the nuclear genome evolution of amphidiploid species when the parental diploid species contain highly differentiated cytoplasms. A scheme for the origins of diploid and amphidiploid species is depicted based on evidence gathered from nuclear RFLP analysis, cpDNA RFLP analysis, cytogenetic studies and classical taxonomy. More... »

PAGES

784-794

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00265606

DOI

http://dx.doi.org/10.1007/bf00265606

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025069170


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Agronomy, University of Wisconsin, 1575 Linden Drive, 53706, Madison, WI, USA", 
          "id": "http://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Department of Plant Pathology, University of Wisconsin, 1630 Linden Drive, 53706, Madison, WI, USA", 
            "Department of Agronomy, University of Wisconsin, 1575 Linden Drive, 53706, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "K. M.", 
        "id": "sg:person.01261126217.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261126217.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Agronomy, University of Wisconsin, 1575 Linden Drive, 53706, Madison, WI, USA", 
          "id": "http://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Department of Agronomy, University of Wisconsin, 1575 Linden Drive, 53706, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Osborn", 
        "givenName": "T. C.", 
        "id": "sg:person.01327241417.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327241417.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Plant Pathology, University of Wisconsin, 1630 Linden Drive, 53706, Madison, WI, USA", 
          "id": "http://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Department of Plant Pathology, University of Wisconsin, 1630 Linden Drive, 53706, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Williams", 
        "givenName": "P. H.", 
        "id": "sg:person.0603635317.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603635317.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00028217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003285485", 
          "https://doi.org/10.1007/bf00028217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00308066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035719295", 
          "https://doi.org/10.1007/bf00308066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00308062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029663898", 
          "https://doi.org/10.1007/bf00308062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00020093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030614415", 
          "https://doi.org/10.1007/bf00020093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00015683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019757552", 
          "https://doi.org/10.1007/bf00015683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00028548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006563127", 
          "https://doi.org/10.1007/bf00028548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-4556-5_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026731135", 
          "https://doi.org/10.1007/978-1-4684-4556-5_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1111/j.1601-5223.1960.tb03082.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021946693", 
          "https://doi.org/10.1111/j.1601-5223.1960.tb03082.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00262500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014985262", 
          "https://doi.org/10.1007/bf00262500"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988-05", 
    "datePublishedReg": "1988-05-01", 
    "description": "Restriction fragment length polymorphisms (RFLPs) of nuclear DNAs have been used to explore the origin and evolution of the six cultivated Brassica species. Extensive RFLP variation was found at the species, subspecies and variety levels. Based on RFLP data from Brassica and related genera, a detailed phylogenetic tree was generated using the PAUP microcomputer program, which permits a quantitative analysis of the interrelationships among Brassica species. The results suggested that 1) B. nigra originated from one evolutionary pathway with Sinapis arvensis or a close relative as the likely progenitor, whereas B. campestris and B. oleracea came from another pathway with a possible common ancestor in wild B. oleracea or a closely related nine chromosome species; 2) the amphidiploid species B. napus and B. juncea have evolved through different combinations of the diploid morphotypes and thus polyphyletic origins may be a common mechanism for the natural occurrence of amphidiploids in Brassica; 3) the cytoplasm has played an important role in the nuclear genome evolution of amphidiploid species when the parental diploid species contain highly differentiated cytoplasms. A scheme for the origins of diploid and amphidiploid species is depicted based on evidence gathered from nuclear RFLP analysis, cpDNA RFLP analysis, cytogenetic studies and classical taxonomy.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00265606", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135804", 
        "issn": [
          "0040-5752", 
          "1432-2242"
        ], 
        "name": "Theoretical and Applied Genetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "75"
      }
    ], 
    "keywords": [
      "restriction fragment length polymorphism", 
      "amphidiploid species", 
      "Brassica species", 
      "B. oleracea", 
      "fragment length polymorphism", 
      "nuclear restriction fragment length polymorphisms", 
      "nuclear genome evolution", 
      "parental diploid species", 
      "nuclear RFLP analysis", 
      "detailed phylogenetic tree", 
      "wild B. oleracea", 
      "RFLP analysis", 
      "possible common ancestor", 
      "length polymorphism", 
      "chromosome species", 
      "genome evolution", 
      "diploid species", 
      "polyphyletic origin", 
      "RFLP variation", 
      "phylogenetic tree", 
      "common ancestor", 
      "B. napus", 
      "B. nigra", 
      "evolutionary pathways", 
      "nuclear DNA", 
      "classical taxonomy", 
      "Sinapis arvensis", 
      "B. juncea", 
      "RFLP data", 
      "B. campestris", 
      "close relatives", 
      "differentiated cytoplasm", 
      "species", 
      "origin of diploid", 
      "Brassica", 
      "variety level", 
      "oleracea", 
      "likely progenitors", 
      "common mechanism", 
      "cytoplasm", 
      "cytogenetic studies", 
      "natural occurrence", 
      "pathway", 
      "taxonomy", 
      "polymorphism", 
      "important role", 
      "napus", 
      "amphidiploids", 
      "subspecies", 
      "ancestor", 
      "diploid", 
      "genus", 
      "juncea", 
      "campestris", 
      "morphotypes", 
      "arvensis", 
      "progenitors", 
      "DNA", 
      "evolution", 
      "origin", 
      "trees", 
      "relatives", 
      "different combinations", 
      "mechanism", 
      "role", 
      "analysis", 
      "variation", 
      "quantitative analysis", 
      "nigra", 
      "evidence", 
      "levels", 
      "occurrence", 
      "interrelationships", 
      "combination", 
      "study", 
      "microcomputer program", 
      "data", 
      "results", 
      "program", 
      "scheme"
    ], 
    "name": "Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs)", 
    "pagination": "784-794", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025069170"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00265606"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00265606", 
      "https://app.dimensions.ai/details/publication/pub.1025069170"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_202.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00265606"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00265606'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00265606'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00265606'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00265606'


 

This table displays all metadata directly associated to this object as RDF triples.

189 TRIPLES      21 PREDICATES      114 URIs      97 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00265606 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N9f6298accea547cda283cd11c394140f
4 schema:citation sg:pub.10.1007/978-1-4684-4556-5_4
5 sg:pub.10.1007/bf00015683
6 sg:pub.10.1007/bf00020093
7 sg:pub.10.1007/bf00028217
8 sg:pub.10.1007/bf00028548
9 sg:pub.10.1007/bf00262500
10 sg:pub.10.1007/bf00308062
11 sg:pub.10.1007/bf00308066
12 sg:pub.10.1111/j.1601-5223.1960.tb03082.x
13 schema:datePublished 1988-05
14 schema:datePublishedReg 1988-05-01
15 schema:description Restriction fragment length polymorphisms (RFLPs) of nuclear DNAs have been used to explore the origin and evolution of the six cultivated Brassica species. Extensive RFLP variation was found at the species, subspecies and variety levels. Based on RFLP data from Brassica and related genera, a detailed phylogenetic tree was generated using the PAUP microcomputer program, which permits a quantitative analysis of the interrelationships among Brassica species. The results suggested that 1) B. nigra originated from one evolutionary pathway with Sinapis arvensis or a close relative as the likely progenitor, whereas B. campestris and B. oleracea came from another pathway with a possible common ancestor in wild B. oleracea or a closely related nine chromosome species; 2) the amphidiploid species B. napus and B. juncea have evolved through different combinations of the diploid morphotypes and thus polyphyletic origins may be a common mechanism for the natural occurrence of amphidiploids in Brassica; 3) the cytoplasm has played an important role in the nuclear genome evolution of amphidiploid species when the parental diploid species contain highly differentiated cytoplasms. A scheme for the origins of diploid and amphidiploid species is depicted based on evidence gathered from nuclear RFLP analysis, cpDNA RFLP analysis, cytogenetic studies and classical taxonomy.
16 schema:genre article
17 schema:isAccessibleForFree false
18 schema:isPartOf Ne81c7fd8ac1e4f57b922d0967bef3651
19 Neda750290d4743239cb3da1abf9dd6cd
20 sg:journal.1135804
21 schema:keywords B. campestris
22 B. juncea
23 B. napus
24 B. nigra
25 B. oleracea
26 Brassica
27 Brassica species
28 DNA
29 RFLP analysis
30 RFLP data
31 RFLP variation
32 Sinapis arvensis
33 amphidiploid species
34 amphidiploids
35 analysis
36 ancestor
37 arvensis
38 campestris
39 chromosome species
40 classical taxonomy
41 close relatives
42 combination
43 common ancestor
44 common mechanism
45 cytogenetic studies
46 cytoplasm
47 data
48 detailed phylogenetic tree
49 different combinations
50 differentiated cytoplasm
51 diploid
52 diploid species
53 evidence
54 evolution
55 evolutionary pathways
56 fragment length polymorphism
57 genome evolution
58 genus
59 important role
60 interrelationships
61 juncea
62 length polymorphism
63 levels
64 likely progenitors
65 mechanism
66 microcomputer program
67 morphotypes
68 napus
69 natural occurrence
70 nigra
71 nuclear DNA
72 nuclear RFLP analysis
73 nuclear genome evolution
74 nuclear restriction fragment length polymorphisms
75 occurrence
76 oleracea
77 origin
78 origin of diploid
79 parental diploid species
80 pathway
81 phylogenetic tree
82 polymorphism
83 polyphyletic origin
84 possible common ancestor
85 progenitors
86 program
87 quantitative analysis
88 relatives
89 restriction fragment length polymorphism
90 results
91 role
92 scheme
93 species
94 study
95 subspecies
96 taxonomy
97 trees
98 variation
99 variety level
100 wild B. oleracea
101 schema:name Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs)
102 schema:pagination 784-794
103 schema:productId N16d6645ee4f643708bc40a6b56195893
104 Nc7b58e0396bc4359aef90c5675ce48fc
105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025069170
106 https://doi.org/10.1007/bf00265606
107 schema:sdDatePublished 2022-10-01T06:28
108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
109 schema:sdPublisher N83a8c84237214a808db124bd56d50017
110 schema:url https://doi.org/10.1007/bf00265606
111 sgo:license sg:explorer/license/
112 sgo:sdDataset articles
113 rdf:type schema:ScholarlyArticle
114 N16d6645ee4f643708bc40a6b56195893 schema:name doi
115 schema:value 10.1007/bf00265606
116 rdf:type schema:PropertyValue
117 N83a8c84237214a808db124bd56d50017 schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 N9b78483624364f58b2240a6adb3c9e70 rdf:first sg:person.0603635317.42
120 rdf:rest rdf:nil
121 N9f6298accea547cda283cd11c394140f rdf:first sg:person.01261126217.78
122 rdf:rest Nb823a60b9ea94d7c851f52f7f71c03a1
123 Nb823a60b9ea94d7c851f52f7f71c03a1 rdf:first sg:person.01327241417.48
124 rdf:rest N9b78483624364f58b2240a6adb3c9e70
125 Nc7b58e0396bc4359aef90c5675ce48fc schema:name dimensions_id
126 schema:value pub.1025069170
127 rdf:type schema:PropertyValue
128 Ne81c7fd8ac1e4f57b922d0967bef3651 schema:issueNumber 5
129 rdf:type schema:PublicationIssue
130 Neda750290d4743239cb3da1abf9dd6cd schema:volumeNumber 75
131 rdf:type schema:PublicationVolume
132 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
133 schema:name Biological Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
136 schema:name Genetics
137 rdf:type schema:DefinedTerm
138 sg:journal.1135804 schema:issn 0040-5752
139 1432-2242
140 schema:name Theoretical and Applied Genetics
141 schema:publisher Springer Nature
142 rdf:type schema:Periodical
143 sg:person.01261126217.78 schema:affiliation grid-institutes:grid.14003.36
144 schema:familyName Song
145 schema:givenName K. M.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261126217.78
147 rdf:type schema:Person
148 sg:person.01327241417.48 schema:affiliation grid-institutes:grid.14003.36
149 schema:familyName Osborn
150 schema:givenName T. C.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327241417.48
152 rdf:type schema:Person
153 sg:person.0603635317.42 schema:affiliation grid-institutes:grid.14003.36
154 schema:familyName Williams
155 schema:givenName P. H.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603635317.42
157 rdf:type schema:Person
158 sg:pub.10.1007/978-1-4684-4556-5_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026731135
159 https://doi.org/10.1007/978-1-4684-4556-5_4
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/bf00015683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019757552
162 https://doi.org/10.1007/bf00015683
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/bf00020093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030614415
165 https://doi.org/10.1007/bf00020093
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/bf00028217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003285485
168 https://doi.org/10.1007/bf00028217
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/bf00028548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006563127
171 https://doi.org/10.1007/bf00028548
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/bf00262500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014985262
174 https://doi.org/10.1007/bf00262500
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/bf00308062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029663898
177 https://doi.org/10.1007/bf00308062
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/bf00308066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035719295
180 https://doi.org/10.1007/bf00308066
181 rdf:type schema:CreativeWork
182 sg:pub.10.1111/j.1601-5223.1960.tb03082.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021946693
183 https://doi.org/10.1111/j.1601-5223.1960.tb03082.x
184 rdf:type schema:CreativeWork
185 grid-institutes:grid.14003.36 schema:alternateName Department of Agronomy, University of Wisconsin, 1575 Linden Drive, 53706, Madison, WI, USA
186 Department of Plant Pathology, University of Wisconsin, 1630 Linden Drive, 53706, Madison, WI, USA
187 schema:name Department of Agronomy, University of Wisconsin, 1575 Linden Drive, 53706, Madison, WI, USA
188 Department of Plant Pathology, University of Wisconsin, 1630 Linden Drive, 53706, Madison, WI, USA
189 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...