An abstract machine theory for formal language parsers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1974-06

AUTHORS

David B. Benson

ABSTRACT

The usual data necessary for any abstract machine theory is given in categorical terminology. In these terms, an abstract machine theory for formal language parsers is developed, exposing the essential nature of any left-to-right parsing scheme. A weak classification of all parsers for a given language is developed and the usual notions of initial machine, reachable machine and minimal machine apply. Minimality is an extremely weak notion in this theory, although it is equivalent to a simple form of immediate error detection for parsers. Remarks on the construction of parsing procedures are given. More... »

PAGES

187-202

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00264037

DOI

http://dx.doi.org/10.1007/bf00264037

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039201981


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Washington State University", 
          "id": "https://www.grid.ac/institutes/grid.30064.31", 
          "name": [
            "Computer Science Department, Washington State University, 99163, Pullman, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Benson", 
        "givenName": "David B.", 
        "id": "sg:person.015006706745.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015006706745.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0019-9958(75)90208-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004742581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9904-1972-13032-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006087732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/362619.362625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007156066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/800195.805911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024151369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0019-9958(70)90379-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032196747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/362007.362035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042707032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0019-9958(65)90426-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047428673"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1974-06", 
    "datePublishedReg": "1974-06-01", 
    "description": "The usual data necessary for any abstract machine theory is given in categorical terminology. In these terms, an abstract machine theory for formal language parsers is developed, exposing the essential nature of any left-to-right parsing scheme. A weak classification of all parsers for a given language is developed and the usual notions of initial machine, reachable machine and minimal machine apply. Minimality is an extremely weak notion in this theory, although it is equivalent to a simple form of immediate error detection for parsers. Remarks on the construction of parsing procedures are given.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00264037", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1133515", 
        "issn": [
          "0001-5903", 
          "1432-0525"
        ], 
        "name": "Acta Informatica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "An abstract machine theory for formal language parsers", 
    "pagination": "187-202", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "babcc96d014d01fcc5cb6ae858f20c9ccfa89630fa318efc098b313c88a9b4bf"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00264037"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039201981"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00264037", 
      "https://app.dimensions.ai/details/publication/pub.1039201981"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130817_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00264037"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00264037'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00264037'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00264037'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00264037'


 

This table displays all metadata directly associated to this object as RDF triples.

82 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00264037 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ncfe0129b8bd745cda5feb5d3ec35bdf3
4 schema:citation https://doi.org/10.1016/s0019-9958(65)90426-2
5 https://doi.org/10.1016/s0019-9958(70)90379-7
6 https://doi.org/10.1016/s0019-9958(75)90208-9
7 https://doi.org/10.1090/s0002-9904-1972-13032-5
8 https://doi.org/10.1145/362007.362035
9 https://doi.org/10.1145/362619.362625
10 https://doi.org/10.1145/800195.805911
11 schema:datePublished 1974-06
12 schema:datePublishedReg 1974-06-01
13 schema:description The usual data necessary for any abstract machine theory is given in categorical terminology. In these terms, an abstract machine theory for formal language parsers is developed, exposing the essential nature of any left-to-right parsing scheme. A weak classification of all parsers for a given language is developed and the usual notions of initial machine, reachable machine and minimal machine apply. Minimality is an extremely weak notion in this theory, although it is equivalent to a simple form of immediate error detection for parsers. Remarks on the construction of parsing procedures are given.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N0c662383f5f34f04aad614c813e407fb
18 N2e48dbee009744a0abd3c8fa33ea5d8e
19 sg:journal.1133515
20 schema:name An abstract machine theory for formal language parsers
21 schema:pagination 187-202
22 schema:productId N465a6eba019245dd9bedc5caba92fca8
23 Ndc529f51ea87419b9bc2ae77aa5c61fe
24 Nf080fe689d3343f2b69bc4884955e176
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039201981
26 https://doi.org/10.1007/bf00264037
27 schema:sdDatePublished 2019-04-11T13:56
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher Nc5ff1dfdf9774bb6aafd7738b3973cdc
30 schema:url http://link.springer.com/10.1007/BF00264037
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N0c662383f5f34f04aad614c813e407fb schema:issueNumber 2
35 rdf:type schema:PublicationIssue
36 N2e48dbee009744a0abd3c8fa33ea5d8e schema:volumeNumber 3
37 rdf:type schema:PublicationVolume
38 N465a6eba019245dd9bedc5caba92fca8 schema:name doi
39 schema:value 10.1007/bf00264037
40 rdf:type schema:PropertyValue
41 Nc5ff1dfdf9774bb6aafd7738b3973cdc schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 Ncfe0129b8bd745cda5feb5d3ec35bdf3 rdf:first sg:person.015006706745.00
44 rdf:rest rdf:nil
45 Ndc529f51ea87419b9bc2ae77aa5c61fe schema:name dimensions_id
46 schema:value pub.1039201981
47 rdf:type schema:PropertyValue
48 Nf080fe689d3343f2b69bc4884955e176 schema:name readcube_id
49 schema:value babcc96d014d01fcc5cb6ae858f20c9ccfa89630fa318efc098b313c88a9b4bf
50 rdf:type schema:PropertyValue
51 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
52 schema:name Information and Computing Sciences
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
55 schema:name Artificial Intelligence and Image Processing
56 rdf:type schema:DefinedTerm
57 sg:journal.1133515 schema:issn 0001-5903
58 1432-0525
59 schema:name Acta Informatica
60 rdf:type schema:Periodical
61 sg:person.015006706745.00 schema:affiliation https://www.grid.ac/institutes/grid.30064.31
62 schema:familyName Benson
63 schema:givenName David B.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015006706745.00
65 rdf:type schema:Person
66 https://doi.org/10.1016/s0019-9958(65)90426-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047428673
67 rdf:type schema:CreativeWork
68 https://doi.org/10.1016/s0019-9958(70)90379-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032196747
69 rdf:type schema:CreativeWork
70 https://doi.org/10.1016/s0019-9958(75)90208-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004742581
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1090/s0002-9904-1972-13032-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006087732
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1145/362007.362035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042707032
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1145/362619.362625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007156066
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1145/800195.805911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024151369
79 rdf:type schema:CreativeWork
80 https://www.grid.ac/institutes/grid.30064.31 schema:alternateName Washington State University
81 schema:name Computer Science Department, Washington State University, 99163, Pullman, WA, USA
82 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...