Ontology type: schema:ScholarlyArticle
1991-05
AUTHORS ABSTRACTA yeast artificial chromosome (YAC) genomic library of Arabidopsis thaliana was constructed in a derivative of the vector pYAC4 which was modified to facilitate the production of end-specific probes for chromosome walking. Experiments in which a subset of 2300 clones from the library were probed with 30 restriction fragment length polymorphism (RFLP) markers indicated that, on the average, the entire genome is represented once in each 800 YAC clones. Thus, the complete library of more than 20000 YACs is expected to contain most or all of the Arabidopsis genome with a high probability. The YAC clones examined in the sample had an average insert size of approximately 150 kb±10 and represented more than 5% of the Arabidopsis genome. Based on the properties of the library and the currently available RFLP maps for Arabidopsis, only one or two steps from flanking RFLPs should be sufficient to isolate an average gene in Arabidopsis by chromosome walking with the YACs. In order to facilitate chromosome walking, a method for the production of hybridization probes from the ends of the inserts was employed that is based on a combination of pre-amplification of the vector/insert junction sequences via the polymerase chain reaction and specific transcription from T3 or T7 RNA polymerase promoters flanking the cloning site in the YAC vector. More... »
PAGES484-490
http://scigraph.springernature.com/pub.10.1007/bf00260662
DOIhttp://dx.doi.org/10.1007/bf00260662
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1046378691
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/1674816
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Genetics",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Base Sequence",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Blotting, Southern",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Chromosome Walking",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Chromosomes, Fungal",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Gene Library",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Molecular Sequence Data",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Plants",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Polymerase Chain Reaction",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Polymorphism, Restriction Fragment Length",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Restriction Mapping",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "MSU-DOE Plant Research Laboratory, Michigan State University, 48824, East Lansing, MI, USA",
"id": "http://www.grid.ac/institutes/grid.17088.36",
"name": [
"MSU-DOE Plant Research Laboratory, Michigan State University, 48824, East Lansing, MI, USA"
],
"type": "Organization"
},
"familyName": "Grill",
"givenName": "Erwin",
"id": "sg:person.01237534662.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237534662.42"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "MSU-DOE Plant Research Laboratory, Michigan State University, 48824, East Lansing, MI, USA",
"id": "http://www.grid.ac/institutes/grid.17088.36",
"name": [
"MSU-DOE Plant Research Laboratory, Michigan State University, 48824, East Lansing, MI, USA"
],
"type": "Organization"
},
"familyName": "Somerville",
"givenName": "Chris",
"id": "sg:person.01177540227.84",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177540227.84"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf00027501",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053373097",
"https://doi.org/10.1007/bf00027501"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/335184a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005161193",
"https://doi.org/10.1038/335184a0"
],
"type": "CreativeWork"
}
],
"datePublished": "1991-05",
"datePublishedReg": "1991-05-01",
"description": "A yeast artificial chromosome (YAC) genomic library of Arabidopsis thaliana was constructed in a derivative of the vector pYAC4 which was modified to facilitate the production of end-specific probes for chromosome walking. Experiments in which a subset of 2300 clones from the library were probed with 30 restriction fragment length polymorphism (RFLP) markers indicated that, on the average, the entire genome is represented once in each 800 YAC clones. Thus, the complete library of more than 20000 YACs is expected to contain most or all of the Arabidopsis genome with a high probability. The YAC clones examined in the sample had an average insert size of approximately 150 kb\u00b110 and represented more than 5% of the Arabidopsis genome. Based on the properties of the library and the currently available RFLP maps for Arabidopsis, only one or two steps from flanking RFLPs should be sufficient to isolate an average gene in Arabidopsis by chromosome walking with the YACs. In order to facilitate chromosome walking, a method for the production of hybridization probes from the ends of the inserts was employed that is based on a combination of pre-amplification of the vector/insert junction sequences via the polymerase chain reaction and specific transcription from T3 or T7 RNA polymerase promoters flanking the cloning site in the YAC vector.",
"genre": "article",
"id": "sg:pub.10.1007/bf00260662",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1297380",
"issn": [
"1617-4615",
"1432-1874"
],
"name": "Molecular Genetics and Genomics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "226"
}
],
"keywords": [
"chromosome walking",
"Arabidopsis genome",
"YAC clones",
"restriction fragment length polymorphism (RFLP) markers",
"fragment length polymorphism (AFLP) markers",
"yeast artificial chromosome library",
"T7 RNA polymerase promoter",
"artificial chromosome library",
"end-specific probes",
"length polymorphism markers",
"average insert size",
"RNA polymerase promoter",
"average gene",
"Arabidopsis thaliana",
"chromosome library",
"genomic library",
"polymorphism markers",
"specific transcription",
"YAC vector",
"entire genome",
"RFLP map",
"polymerase promoter",
"Arabidopsis",
"insert size",
"junction sequences",
"genome",
"hybridization probes",
"cloning site",
"clones",
"YAC",
"polymerase chain reaction",
"complete library",
"thaliana",
"library",
"chromosomes",
"transcription",
"pYAC4",
"genes",
"promoter",
"chain reaction",
"RFLP",
"sequence",
"production",
"probe",
"markers",
"inserts",
"sites",
"characterization",
"vector",
"size",
"subset",
"properties",
"step",
"high probability",
"maps",
"T3",
"combination",
"experiments",
"reaction",
"method",
"end",
"derivatives",
"samples",
"probability",
"order",
"average",
"construction",
"walking"
],
"name": "Construction and characterization of a yeast artificial chromosome library of Arabidopsis which is suitable for chromosome walking",
"pagination": "484-490",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1046378691"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf00260662"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"1674816"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf00260662",
"https://app.dimensions.ai/details/publication/pub.1046378691"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:19",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_255.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf00260662"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00260662'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00260662'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00260662'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00260662'
This table displays all metadata directly associated to this object as RDF triples.
185 TRIPLES
22 PREDICATES
107 URIs
97 LITERALS
17 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf00260662 | schema:about | N06b7b1d5665e43f98e2cf28b491f51e0 |
2 | ″ | ″ | N4121f2eac85e47bb83c1b8a213d0504c |
3 | ″ | ″ | N43bd8f000a7a42ab86af04130a93479d |
4 | ″ | ″ | N8ad8f5323c294348b7b9b43c4252acc6 |
5 | ″ | ″ | Na8d3a3c46d22460fb62ffe916dff1164 |
6 | ″ | ″ | Nab28aa9924a8432f9eff7bfb94644d01 |
7 | ″ | ″ | Nb2985c1594cf4d7e8bef09b416189d34 |
8 | ″ | ″ | Nbcd5dd72717041e79cb68d268d76cab3 |
9 | ″ | ″ | Ncca6b33511854239b9e8533836f36708 |
10 | ″ | ″ | Ne4d5d21889624d78a2474f309e1952a7 |
11 | ″ | ″ | anzsrc-for:06 |
12 | ″ | ″ | anzsrc-for:0604 |
13 | ″ | schema:author | N713b5f0d1bc5431b836570aad4f766c5 |
14 | ″ | schema:citation | sg:pub.10.1007/bf00027501 |
15 | ″ | ″ | sg:pub.10.1038/335184a0 |
16 | ″ | schema:datePublished | 1991-05 |
17 | ″ | schema:datePublishedReg | 1991-05-01 |
18 | ″ | schema:description | A yeast artificial chromosome (YAC) genomic library of Arabidopsis thaliana was constructed in a derivative of the vector pYAC4 which was modified to facilitate the production of end-specific probes for chromosome walking. Experiments in which a subset of 2300 clones from the library were probed with 30 restriction fragment length polymorphism (RFLP) markers indicated that, on the average, the entire genome is represented once in each 800 YAC clones. Thus, the complete library of more than 20000 YACs is expected to contain most or all of the Arabidopsis genome with a high probability. The YAC clones examined in the sample had an average insert size of approximately 150 kb±10 and represented more than 5% of the Arabidopsis genome. Based on the properties of the library and the currently available RFLP maps for Arabidopsis, only one or two steps from flanking RFLPs should be sufficient to isolate an average gene in Arabidopsis by chromosome walking with the YACs. In order to facilitate chromosome walking, a method for the production of hybridization probes from the ends of the inserts was employed that is based on a combination of pre-amplification of the vector/insert junction sequences via the polymerase chain reaction and specific transcription from T3 or T7 RNA polymerase promoters flanking the cloning site in the YAC vector. |
19 | ″ | schema:genre | article |
20 | ″ | schema:inLanguage | en |
21 | ″ | schema:isAccessibleForFree | false |
22 | ″ | schema:isPartOf | N02e70577df864ade98618343bd799bf2 |
23 | ″ | ″ | N6b69cc499e3a4f61815e8d7d08d4d76e |
24 | ″ | ″ | sg:journal.1297380 |
25 | ″ | schema:keywords | Arabidopsis |
26 | ″ | ″ | Arabidopsis genome |
27 | ″ | ″ | Arabidopsis thaliana |
28 | ″ | ″ | RFLP |
29 | ″ | ″ | RFLP map |
30 | ″ | ″ | RNA polymerase promoter |
31 | ″ | ″ | T3 |
32 | ″ | ″ | T7 RNA polymerase promoter |
33 | ″ | ″ | YAC |
34 | ″ | ″ | YAC clones |
35 | ″ | ″ | YAC vector |
36 | ″ | ″ | artificial chromosome library |
37 | ″ | ″ | average |
38 | ″ | ″ | average gene |
39 | ″ | ″ | average insert size |
40 | ″ | ″ | chain reaction |
41 | ″ | ″ | characterization |
42 | ″ | ″ | chromosome library |
43 | ″ | ″ | chromosome walking |
44 | ″ | ″ | chromosomes |
45 | ″ | ″ | clones |
46 | ″ | ″ | cloning site |
47 | ″ | ″ | combination |
48 | ″ | ″ | complete library |
49 | ″ | ″ | construction |
50 | ″ | ″ | derivatives |
51 | ″ | ″ | end |
52 | ″ | ″ | end-specific probes |
53 | ″ | ″ | entire genome |
54 | ″ | ″ | experiments |
55 | ″ | ″ | fragment length polymorphism (AFLP) markers |
56 | ″ | ″ | genes |
57 | ″ | ″ | genome |
58 | ″ | ″ | genomic library |
59 | ″ | ″ | high probability |
60 | ″ | ″ | hybridization probes |
61 | ″ | ″ | insert size |
62 | ″ | ″ | inserts |
63 | ″ | ″ | junction sequences |
64 | ″ | ″ | length polymorphism markers |
65 | ″ | ″ | library |
66 | ″ | ″ | maps |
67 | ″ | ″ | markers |
68 | ″ | ″ | method |
69 | ″ | ″ | order |
70 | ″ | ″ | pYAC4 |
71 | ″ | ″ | polymerase chain reaction |
72 | ″ | ″ | polymerase promoter |
73 | ″ | ″ | polymorphism markers |
74 | ″ | ″ | probability |
75 | ″ | ″ | probe |
76 | ″ | ″ | production |
77 | ″ | ″ | promoter |
78 | ″ | ″ | properties |
79 | ″ | ″ | reaction |
80 | ″ | ″ | restriction fragment length polymorphism (RFLP) markers |
81 | ″ | ″ | samples |
82 | ″ | ″ | sequence |
83 | ″ | ″ | sites |
84 | ″ | ″ | size |
85 | ″ | ″ | specific transcription |
86 | ″ | ″ | step |
87 | ″ | ″ | subset |
88 | ″ | ″ | thaliana |
89 | ″ | ″ | transcription |
90 | ″ | ″ | vector |
91 | ″ | ″ | walking |
92 | ″ | ″ | yeast artificial chromosome library |
93 | ″ | schema:name | Construction and characterization of a yeast artificial chromosome library of Arabidopsis which is suitable for chromosome walking |
94 | ″ | schema:pagination | 484-490 |
95 | ″ | schema:productId | N5008f92005e04b588a1ede39ccbab1b9 |
96 | ″ | ″ | Ncda9d51a418d440ca1b74833cdaaf031 |
97 | ″ | ″ | Nd8ed7c1c4f754feabd684f5e8d2a3446 |
98 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1046378691 |
99 | ″ | ″ | https://doi.org/10.1007/bf00260662 |
100 | ″ | schema:sdDatePublished | 2022-05-20T07:19 |
101 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
102 | ″ | schema:sdPublisher | Nfcbaeec48c1a4751a1d7be3dccdc7b43 |
103 | ″ | schema:url | https://doi.org/10.1007/bf00260662 |
104 | ″ | sgo:license | sg:explorer/license/ |
105 | ″ | sgo:sdDataset | articles |
106 | ″ | rdf:type | schema:ScholarlyArticle |
107 | N02e70577df864ade98618343bd799bf2 | schema:volumeNumber | 226 |
108 | ″ | rdf:type | schema:PublicationVolume |
109 | N06b7b1d5665e43f98e2cf28b491f51e0 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
110 | ″ | schema:name | Molecular Sequence Data |
111 | ″ | rdf:type | schema:DefinedTerm |
112 | N4121f2eac85e47bb83c1b8a213d0504c | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
113 | ″ | schema:name | Gene Library |
114 | ″ | rdf:type | schema:DefinedTerm |
115 | N43bd8f000a7a42ab86af04130a93479d | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
116 | ″ | schema:name | Plants |
117 | ″ | rdf:type | schema:DefinedTerm |
118 | N5008f92005e04b588a1ede39ccbab1b9 | schema:name | pubmed_id |
119 | ″ | schema:value | 1674816 |
120 | ″ | rdf:type | schema:PropertyValue |
121 | N6b69cc499e3a4f61815e8d7d08d4d76e | schema:issueNumber | 3 |
122 | ″ | rdf:type | schema:PublicationIssue |
123 | N713b5f0d1bc5431b836570aad4f766c5 | rdf:first | sg:person.01237534662.42 |
124 | ″ | rdf:rest | N8b34e83d13c744b0a5023c065816cdaa |
125 | N8ad8f5323c294348b7b9b43c4252acc6 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
126 | ″ | schema:name | Polymerase Chain Reaction |
127 | ″ | rdf:type | schema:DefinedTerm |
128 | N8b34e83d13c744b0a5023c065816cdaa | rdf:first | sg:person.01177540227.84 |
129 | ″ | rdf:rest | rdf:nil |
130 | Na8d3a3c46d22460fb62ffe916dff1164 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
131 | ″ | schema:name | Chromosomes, Fungal |
132 | ″ | rdf:type | schema:DefinedTerm |
133 | Nab28aa9924a8432f9eff7bfb94644d01 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
134 | ″ | schema:name | Polymorphism, Restriction Fragment Length |
135 | ″ | rdf:type | schema:DefinedTerm |
136 | Nb2985c1594cf4d7e8bef09b416189d34 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
137 | ″ | schema:name | Chromosome Walking |
138 | ″ | rdf:type | schema:DefinedTerm |
139 | Nbcd5dd72717041e79cb68d268d76cab3 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
140 | ″ | schema:name | Blotting, Southern |
141 | ″ | rdf:type | schema:DefinedTerm |
142 | Ncca6b33511854239b9e8533836f36708 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
143 | ″ | schema:name | Restriction Mapping |
144 | ″ | rdf:type | schema:DefinedTerm |
145 | Ncda9d51a418d440ca1b74833cdaaf031 | schema:name | dimensions_id |
146 | ″ | schema:value | pub.1046378691 |
147 | ″ | rdf:type | schema:PropertyValue |
148 | Nd8ed7c1c4f754feabd684f5e8d2a3446 | schema:name | doi |
149 | ″ | schema:value | 10.1007/bf00260662 |
150 | ″ | rdf:type | schema:PropertyValue |
151 | Ne4d5d21889624d78a2474f309e1952a7 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
152 | ″ | schema:name | Base Sequence |
153 | ″ | rdf:type | schema:DefinedTerm |
154 | Nfcbaeec48c1a4751a1d7be3dccdc7b43 | schema:name | Springer Nature - SN SciGraph project |
155 | ″ | rdf:type | schema:Organization |
156 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
157 | ″ | schema:name | Biological Sciences |
158 | ″ | rdf:type | schema:DefinedTerm |
159 | anzsrc-for:0604 | schema:inDefinedTermSet | anzsrc-for: |
160 | ″ | schema:name | Genetics |
161 | ″ | rdf:type | schema:DefinedTerm |
162 | sg:journal.1297380 | schema:issn | 1432-1874 |
163 | ″ | ″ | 1617-4615 |
164 | ″ | schema:name | Molecular Genetics and Genomics |
165 | ″ | schema:publisher | Springer Nature |
166 | ″ | rdf:type | schema:Periodical |
167 | sg:person.01177540227.84 | schema:affiliation | grid-institutes:grid.17088.36 |
168 | ″ | schema:familyName | Somerville |
169 | ″ | schema:givenName | Chris |
170 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177540227.84 |
171 | ″ | rdf:type | schema:Person |
172 | sg:person.01237534662.42 | schema:affiliation | grid-institutes:grid.17088.36 |
173 | ″ | schema:familyName | Grill |
174 | ″ | schema:givenName | Erwin |
175 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237534662.42 |
176 | ″ | rdf:type | schema:Person |
177 | sg:pub.10.1007/bf00027501 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1053373097 |
178 | ″ | ″ | https://doi.org/10.1007/bf00027501 |
179 | ″ | rdf:type | schema:CreativeWork |
180 | sg:pub.10.1038/335184a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1005161193 |
181 | ″ | ″ | https://doi.org/10.1038/335184a0 |
182 | ″ | rdf:type | schema:CreativeWork |
183 | grid-institutes:grid.17088.36 | schema:alternateName | MSU-DOE Plant Research Laboratory, Michigan State University, 48824, East Lansing, MI, USA |
184 | ″ | schema:name | MSU-DOE Plant Research Laboratory, Michigan State University, 48824, East Lansing, MI, USA |
185 | ″ | rdf:type | schema:Organization |