Quantitative evaluation of tricuspid regurgitation by digital simulation of cardiac time-activity curves View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1984-02

AUTHORS

Monique Hunault, Nagara Tamaki, Kotaro Minato, Takao Mukai, Kanji Torizuka, Yutaka Konishi, Michiyoshi Kuwahara, Yasushi Ishii

ABSTRACT

To estimate tricuspid regurgitation (TR) quantitatively, a curve fitting method by computer has been employed. Transport in the right cardiac chambers after intravenous bolus injection of macro-aggregated albumin labeled with technetium 99m (99mTc-MAA) was recorded in anterior view by a gammacamera system. Disturbance of the dilution curves from the left heart can be avoided by using 99mTc-MAA injection. To know the radioisotope activity during the transport, time-activity curves are recorded for the superior vena cava, right atrium, and right ventricle. Parametric differential equations, obtained from compartmental analysis, interpret these curves mathematically. The rate of regurgitation is determined by comparison, using an iterative process, between the original and simulated curves. The whole process is performed automatically by computer. The calculated regurgitation value correlated well with the value from the analog simulation. The method clearly separated those with TR from those without TR. This digital simulation for estimating parameters using a compartmental model is a feasible tool in detecting and quantifying TR. More... »

PAGES

68-72

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00254439

DOI

http://dx.doi.org/10.1007/bf00254439

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035062828

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/6705812


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Cardiovascular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radionuclide Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tricuspid Valve Insufficiency", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kyoto University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411217.0", 
          "name": [
            "Department of Radiology and Nuclear Medicine, Kyoto University Hospital, 606, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hunault", 
        "givenName": "Monique", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411217.0", 
          "name": [
            "Department of Radiology and Nuclear Medicine, Kyoto University Hospital, 606, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tamaki", 
        "givenName": "Nagara", 
        "id": "sg:person.0634755344.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634755344.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411217.0", 
          "name": [
            "Department of Radiology and Nuclear Medicine, Kyoto University Hospital, 606, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Minato", 
        "givenName": "Kotaro", 
        "id": "sg:person.07720721465.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07720721465.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411217.0", 
          "name": [
            "Department of Radiology and Nuclear Medicine, Kyoto University Hospital, 606, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mukai", 
        "givenName": "Takao", 
        "id": "sg:person.012036026332.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012036026332.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411217.0", 
          "name": [
            "Department of Radiology and Nuclear Medicine, Kyoto University Hospital, 606, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torizuka", 
        "givenName": "Kanji", 
        "id": "sg:person.01250134603.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250134603.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411217.0", 
          "name": [
            "Second Department of Surgery, Kyoto University Hospital, 606, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konishi", 
        "givenName": "Yutaka", 
        "id": "sg:person.016644455452.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016644455452.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Automation Research Laboratory, Kyoto University, 611, Uji, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuwahara", 
        "givenName": "Michiyoshi", 
        "id": "sg:person.0577006021.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577006021.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Fukui", 
          "id": "https://www.grid.ac/institutes/grid.163577.1", 
          "name": [
            "Fukui Medical School, 910-11, Fukui, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishii", 
        "givenName": "Yasushi", 
        "id": "sg:person.01320036541.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320036541.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1161/01.res.8.1.183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001032960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.44.1.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001407665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1253/jcj.38.169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003479974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1253/jcj.46.1147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035267007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-1098(79)90002-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036720262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-1098(79)90002-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036720262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1974.37.4.541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1080471616"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1984-02", 
    "datePublishedReg": "1984-02-01", 
    "description": "To estimate tricuspid regurgitation (TR) quantitatively, a curve fitting method by computer has been employed. Transport in the right cardiac chambers after intravenous bolus injection of macro-aggregated albumin labeled with technetium 99m (99mTc-MAA) was recorded in anterior view by a gammacamera system. Disturbance of the dilution curves from the left heart can be avoided by using 99mTc-MAA injection. To know the radioisotope activity during the transport, time-activity curves are recorded for the superior vena cava, right atrium, and right ventricle. Parametric differential equations, obtained from compartmental analysis, interpret these curves mathematically. The rate of regurgitation is determined by comparison, using an iterative process, between the original and simulated curves. The whole process is performed automatically by computer. The calculated regurgitation value correlated well with the value from the analog simulation. The method clearly separated those with TR from those without TR. This digital simulation for estimating parameters using a compartmental model is a feasible tool in detecting and quantifying TR.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00254439", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Quantitative evaluation of tricuspid regurgitation by digital simulation of cardiac time-activity curves", 
    "pagination": "68-72", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a706c6637f64944e7973de45fc0ec092d88b463507a5c8b4be9ac7ea7adddd4e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "6705812"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7606882"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00254439"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035062828"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00254439", 
      "https://app.dimensions.ai/details/publication/pub.1035062828"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130808_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00254439"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00254439'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00254439'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00254439'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00254439'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      21 PREDICATES      42 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00254439 schema:about N577e782e8a7748aabfae820891561688
2 Nb1e174999ac54d42840b30d64258769e
3 Nbdc176dec1f4444faa479ee81220be12
4 Nc4af7a8a62df4799af17537269f85ab2
5 Nce7fc03318f94351961757a31e6312f4
6 Nf9666699b94848d7817d05a7d2ed1928
7 Nfa10f96333ab4cf3b2c95d587b3ea507
8 anzsrc-for:08
9 anzsrc-for:0801
10 schema:author Neb5dd1e003154299b54abef58312e7f3
11 schema:citation https://doi.org/10.1016/0005-1098(79)90002-5
12 https://doi.org/10.1152/jappl.1974.37.4.541
13 https://doi.org/10.1161/01.cir.44.1.37
14 https://doi.org/10.1161/01.res.8.1.183
15 https://doi.org/10.1253/jcj.38.169
16 https://doi.org/10.1253/jcj.46.1147
17 schema:datePublished 1984-02
18 schema:datePublishedReg 1984-02-01
19 schema:description To estimate tricuspid regurgitation (TR) quantitatively, a curve fitting method by computer has been employed. Transport in the right cardiac chambers after intravenous bolus injection of macro-aggregated albumin labeled with technetium 99m (99mTc-MAA) was recorded in anterior view by a gammacamera system. Disturbance of the dilution curves from the left heart can be avoided by using 99mTc-MAA injection. To know the radioisotope activity during the transport, time-activity curves are recorded for the superior vena cava, right atrium, and right ventricle. Parametric differential equations, obtained from compartmental analysis, interpret these curves mathematically. The rate of regurgitation is determined by comparison, using an iterative process, between the original and simulated curves. The whole process is performed automatically by computer. The calculated regurgitation value correlated well with the value from the analog simulation. The method clearly separated those with TR from those without TR. This digital simulation for estimating parameters using a compartmental model is a feasible tool in detecting and quantifying TR.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N2f901b981b8340a6be85cc1d603dbeb7
24 N60ea6075e8c34dfbbcce95fd5abfedc5
25 sg:journal.1297401
26 schema:name Quantitative evaluation of tricuspid regurgitation by digital simulation of cardiac time-activity curves
27 schema:pagination 68-72
28 schema:productId N5926cd4332f44901967a9ed2127100eb
29 N642a529ed6484220821742bec92ccd0d
30 N78ef3541b16043049c7c1b7a51d13326
31 Na1da2b337e9f4e499c1f3083244abe86
32 Nd4ba86312fdb4264a201017dc39b3fc9
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035062828
34 https://doi.org/10.1007/bf00254439
35 schema:sdDatePublished 2019-04-11T13:53
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N85c9e410ae514e8fb371076a913f7687
38 schema:url http://link.springer.com/10.1007/BF00254439
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N2f901b981b8340a6be85cc1d603dbeb7 schema:issueNumber 2
43 rdf:type schema:PublicationIssue
44 N36f32143c7c24052a52b44a2285ebd9d rdf:first sg:person.0634755344.01
45 rdf:rest Na93bf0b2a7c34e6aa1f29de2f328bbc5
46 N577e782e8a7748aabfae820891561688 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
47 schema:name Time Factors
48 rdf:type schema:DefinedTerm
49 N5926cd4332f44901967a9ed2127100eb schema:name doi
50 schema:value 10.1007/bf00254439
51 rdf:type schema:PropertyValue
52 N600f6b65d26348e5811999ee46b250fc rdf:first sg:person.01320036541.72
53 rdf:rest rdf:nil
54 N60ea6075e8c34dfbbcce95fd5abfedc5 schema:volumeNumber 9
55 rdf:type schema:PublicationVolume
56 N642a529ed6484220821742bec92ccd0d schema:name pubmed_id
57 schema:value 6705812
58 rdf:type schema:PropertyValue
59 N78ef3541b16043049c7c1b7a51d13326 schema:name readcube_id
60 schema:value a706c6637f64944e7973de45fc0ec092d88b463507a5c8b4be9ac7ea7adddd4e
61 rdf:type schema:PropertyValue
62 N7d5e6d4c10164765a4a22e79c58d222b schema:affiliation https://www.grid.ac/institutes/grid.411217.0
63 schema:familyName Hunault
64 schema:givenName Monique
65 rdf:type schema:Person
66 N85c9e410ae514e8fb371076a913f7687 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Na1da2b337e9f4e499c1f3083244abe86 schema:name nlm_unique_id
69 schema:value 7606882
70 rdf:type schema:PropertyValue
71 Na93bf0b2a7c34e6aa1f29de2f328bbc5 rdf:first sg:person.07720721465.10
72 rdf:rest Nd00526b0622042c299ecacc5df24b58f
73 Nb1e174999ac54d42840b30d64258769e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Radionuclide Imaging
75 rdf:type schema:DefinedTerm
76 Nbdc176dec1f4444faa479ee81220be12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Tricuspid Valve Insufficiency
78 rdf:type schema:DefinedTerm
79 Nbe4615a8afc54fa697235e18d853bcb8 rdf:first sg:person.0577006021.32
80 rdf:rest N600f6b65d26348e5811999ee46b250fc
81 Nc4af7a8a62df4799af17537269f85ab2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Models, Cardiovascular
83 rdf:type schema:DefinedTerm
84 Nc92a9449d64d4202890b30e210cfb793 rdf:first sg:person.01250134603.19
85 rdf:rest Neb802fb70da44f60b16c51d8cc8f5b82
86 Nce7fc03318f94351961757a31e6312f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Computers
88 rdf:type schema:DefinedTerm
89 Nd00526b0622042c299ecacc5df24b58f rdf:first sg:person.012036026332.22
90 rdf:rest Nc92a9449d64d4202890b30e210cfb793
91 Nd4ba86312fdb4264a201017dc39b3fc9 schema:name dimensions_id
92 schema:value pub.1035062828
93 rdf:type schema:PropertyValue
94 Neb5dd1e003154299b54abef58312e7f3 rdf:first N7d5e6d4c10164765a4a22e79c58d222b
95 rdf:rest N36f32143c7c24052a52b44a2285ebd9d
96 Neb802fb70da44f60b16c51d8cc8f5b82 rdf:first sg:person.016644455452.11
97 rdf:rest Nbe4615a8afc54fa697235e18d853bcb8
98 Nf9666699b94848d7817d05a7d2ed1928 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Mathematics
100 rdf:type schema:DefinedTerm
101 Nfa10f96333ab4cf3b2c95d587b3ea507 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Humans
103 rdf:type schema:DefinedTerm
104 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
105 schema:name Information and Computing Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
108 schema:name Artificial Intelligence and Image Processing
109 rdf:type schema:DefinedTerm
110 sg:journal.1297401 schema:issn 1619-7070
111 1619-7089
112 schema:name European Journal of Nuclear Medicine and Molecular Imaging
113 rdf:type schema:Periodical
114 sg:person.012036026332.22 schema:affiliation https://www.grid.ac/institutes/grid.411217.0
115 schema:familyName Mukai
116 schema:givenName Takao
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012036026332.22
118 rdf:type schema:Person
119 sg:person.01250134603.19 schema:affiliation https://www.grid.ac/institutes/grid.411217.0
120 schema:familyName Torizuka
121 schema:givenName Kanji
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250134603.19
123 rdf:type schema:Person
124 sg:person.01320036541.72 schema:affiliation https://www.grid.ac/institutes/grid.163577.1
125 schema:familyName Ishii
126 schema:givenName Yasushi
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320036541.72
128 rdf:type schema:Person
129 sg:person.016644455452.11 schema:affiliation https://www.grid.ac/institutes/grid.411217.0
130 schema:familyName Konishi
131 schema:givenName Yutaka
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016644455452.11
133 rdf:type schema:Person
134 sg:person.0577006021.32 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
135 schema:familyName Kuwahara
136 schema:givenName Michiyoshi
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577006021.32
138 rdf:type schema:Person
139 sg:person.0634755344.01 schema:affiliation https://www.grid.ac/institutes/grid.411217.0
140 schema:familyName Tamaki
141 schema:givenName Nagara
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634755344.01
143 rdf:type schema:Person
144 sg:person.07720721465.10 schema:affiliation https://www.grid.ac/institutes/grid.411217.0
145 schema:familyName Minato
146 schema:givenName Kotaro
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07720721465.10
148 rdf:type schema:Person
149 https://doi.org/10.1016/0005-1098(79)90002-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036720262
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1152/jappl.1974.37.4.541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1080471616
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1161/01.cir.44.1.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001407665
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1161/01.res.8.1.183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001032960
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1253/jcj.38.169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003479974
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1253/jcj.46.1147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035267007
160 rdf:type schema:CreativeWork
161 https://www.grid.ac/institutes/grid.163577.1 schema:alternateName University of Fukui
162 schema:name Fukui Medical School, 910-11, Fukui, Japan
163 rdf:type schema:Organization
164 https://www.grid.ac/institutes/grid.258799.8 schema:alternateName Kyoto University
165 schema:name Automation Research Laboratory, Kyoto University, 611, Uji, Kyoto, Japan
166 rdf:type schema:Organization
167 https://www.grid.ac/institutes/grid.411217.0 schema:alternateName Kyoto University Hospital
168 schema:name Department of Radiology and Nuclear Medicine, Kyoto University Hospital, 606, Kyoto, Japan
169 Second Department of Surgery, Kyoto University Hospital, 606, Kyoto, Japan
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...