A comparative study of the observations of high clouds and simulations by an atmospheric general circulation model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-03

AUTHORS

R T Wetherald, V Ramaswamy, S Manabe

ABSTRACT

The importance of clouds in the upper troposphere (cirrus) for the sensitivity of the Earth's climate e.g., requires that these clouds be modeled accurately in general circulation model (GCM) studies of the atmosphere. Bearing in mind the lack of unambiguous quantitative information on the geographical distribution and properties of high clouds, the simulated distribution of upper tropospheric clouds in a spectral GCM is compared with several satellite-derived data-sets that pertain to high clouds only, for both winter and summer seasons. In the model, clouds are assumed to occupy an entire gridbox whenever the relative humidity exceeds 99%: otherwise the grid box is assumed to be free of cloud. Despite the simplicity of the cloud prediction scheme, the geographical distribution of the maxima in the model's upper tropospheric cloud cover coincides approximately with the regions of the observed maxima in the high cloud amount and their frequency of occurrence (e.g., intertropical convergence zone and the monsoon areas). These areas exhibit a minimum in the outgoing longwave radiation (OLR; Nimbus-7) and are also coincident with regions of heavy precipitation. The model, with its relatively simple cloud formation scheme, appears to capture the principal large-scale features of the tropical convective processes that are evident in the satellite and precipitation datasets, wherein the intense, upward motion is accompanied by condensation and the spreading of thick upper tropospheric layers of high relative humidity and cloudiness in the vicinity of the tropical rainbelt regions. More... »

PAGES

135-143

Journal

TITLE

Climate Dynamics

ISSUE

3

VOLUME

5

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00251805

DOI

http://dx.doi.org/10.1007/bf00251805

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042667638


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Geophysical Fluid Dynamics Laboratory/NOAA, Princeton University, P. O. Box 308, 08542, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wetherald", 
        "givenName": "R T", 
        "id": "sg:person.0772372250.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772372250.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Geophysical Fluid Dynamics Laboratory/NOAA, Princeton University, P. O. Box 308, 08542, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ramaswamy", 
        "givenName": "V", 
        "id": "sg:person.0753353733.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753353733.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Geophysical Fluid Dynamics Laboratory/NOAA, Princeton University, P. O. Box 308, 08542, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Manabe", 
        "givenName": "S", 
        "id": "sg:person.012361147621.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012361147621.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1175/1520-0469(1983)040<0605:troasg>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002181559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1989)046<2293:sabcca>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002569384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jd091id02p02775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013408890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1974)031<0118:apftao>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017628581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.49709239107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020359321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0450(1988)027<0379:tccsdo>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025741738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1980)037<1485:ccacs>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025913012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/rg025i004p00760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028612451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1983)040<0435:ulccfa>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031817547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1988)045<1397:cfpiag>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039004668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1981)109<2260:soav>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049388696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1989)002<0671:ngccpi>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063421274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1965)093<0769:scoagc>2.3.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063451636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1968)096<0735:cavnmd>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063452003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1969)097<0739:catoc>2.3.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063452141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2151/jmsj1965.64a.0_151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084387900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2151/jmsj1965.65.1_151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084929181"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1991-03", 
    "datePublishedReg": "1991-03-01", 
    "description": "The importance of clouds in the upper troposphere (cirrus) for the sensitivity of the Earth's climate e.g., requires that these clouds be modeled accurately in general circulation model (GCM) studies of the atmosphere. Bearing in mind the lack of unambiguous quantitative information on the geographical distribution and properties of high clouds, the simulated distribution of upper tropospheric clouds in a spectral GCM is compared with several satellite-derived data-sets that pertain to high clouds only, for both winter and summer seasons. In the model, clouds are assumed to occupy an entire gridbox whenever the relative humidity exceeds 99%: otherwise the grid box is assumed to be free of cloud. Despite the simplicity of the cloud prediction scheme, the geographical distribution of the maxima in the model's upper tropospheric cloud cover coincides approximately with the regions of the observed maxima in the high cloud amount and their frequency of occurrence (e.g., intertropical convergence zone and the monsoon areas). These areas exhibit a minimum in the outgoing longwave radiation (OLR; Nimbus-7) and are also coincident with regions of heavy precipitation. The model, with its relatively simple cloud formation scheme, appears to capture the principal large-scale features of the tropical convective processes that are evident in the satellite and precipitation datasets, wherein the intense, upward motion is accompanied by condensation and the spreading of thick upper tropospheric layers of high relative humidity and cloudiness in the vicinity of the tropical rainbelt regions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00251805", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "A comparative study of the observations of high clouds and simulations by an atmospheric general circulation model", 
    "pagination": "135-143", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cb3e68010262099e8f7ee8d87ac16b25d0b968b3355cbe9447b6dfc5c3a4a750"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00251805"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042667638"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00251805", 
      "https://app.dimensions.ai/details/publication/pub.1042667638"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130829_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00251805"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00251805'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00251805'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00251805'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00251805'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00251805 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N918e99d4890e4385bf78845e9c597960
4 schema:citation https://doi.org/10.1002/qj.49709239107
5 https://doi.org/10.1029/jd091id02p02775
6 https://doi.org/10.1029/rg025i004p00760
7 https://doi.org/10.1175/1520-0442(1989)002<0671:ngccpi>2.0.co;2
8 https://doi.org/10.1175/1520-0450(1988)027<0379:tccsdo>2.0.co;2
9 https://doi.org/10.1175/1520-0469(1974)031<0118:apftao>2.0.co;2
10 https://doi.org/10.1175/1520-0469(1980)037<1485:ccacs>2.0.co;2
11 https://doi.org/10.1175/1520-0469(1983)040<0435:ulccfa>2.0.co;2
12 https://doi.org/10.1175/1520-0469(1983)040<0605:troasg>2.0.co;2
13 https://doi.org/10.1175/1520-0469(1988)045<1397:cfpiag>2.0.co;2
14 https://doi.org/10.1175/1520-0469(1989)046<2293:sabcca>2.0.co;2
15 https://doi.org/10.1175/1520-0493(1965)093<0769:scoagc>2.3.co;2
16 https://doi.org/10.1175/1520-0493(1968)096<0735:cavnmd>2.0.co;2
17 https://doi.org/10.1175/1520-0493(1969)097<0739:catoc>2.3.co;2
18 https://doi.org/10.1175/1520-0493(1981)109<2260:soav>2.0.co;2
19 https://doi.org/10.2151/jmsj1965.64a.0_151
20 https://doi.org/10.2151/jmsj1965.65.1_151
21 schema:datePublished 1991-03
22 schema:datePublishedReg 1991-03-01
23 schema:description The importance of clouds in the upper troposphere (cirrus) for the sensitivity of the Earth's climate e.g., requires that these clouds be modeled accurately in general circulation model (GCM) studies of the atmosphere. Bearing in mind the lack of unambiguous quantitative information on the geographical distribution and properties of high clouds, the simulated distribution of upper tropospheric clouds in a spectral GCM is compared with several satellite-derived data-sets that pertain to high clouds only, for both winter and summer seasons. In the model, clouds are assumed to occupy an entire gridbox whenever the relative humidity exceeds 99%: otherwise the grid box is assumed to be free of cloud. Despite the simplicity of the cloud prediction scheme, the geographical distribution of the maxima in the model's upper tropospheric cloud cover coincides approximately with the regions of the observed maxima in the high cloud amount and their frequency of occurrence (e.g., intertropical convergence zone and the monsoon areas). These areas exhibit a minimum in the outgoing longwave radiation (OLR; Nimbus-7) and are also coincident with regions of heavy precipitation. The model, with its relatively simple cloud formation scheme, appears to capture the principal large-scale features of the tropical convective processes that are evident in the satellite and precipitation datasets, wherein the intense, upward motion is accompanied by condensation and the spreading of thick upper tropospheric layers of high relative humidity and cloudiness in the vicinity of the tropical rainbelt regions.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf Nbc7bfe2eb17d495184c9d54dd2af0d63
28 Nfa268973ffd94ea2ab370086c4905126
29 sg:journal.1049631
30 schema:name A comparative study of the observations of high clouds and simulations by an atmospheric general circulation model
31 schema:pagination 135-143
32 schema:productId N1f14183accb74d33a9cef0ed3991f428
33 Ndb99beeee6fa4dc6ae04034ca20ffdd3
34 Nf519fb722a214ce0978880bd0dc76731
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042667638
36 https://doi.org/10.1007/bf00251805
37 schema:sdDatePublished 2019-04-11T14:00
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Nf7feb00afb7247099503f2a9e9d8e933
40 schema:url http://link.springer.com/10.1007/BF00251805
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N06c3273afbc64297b7f6b3821838cbd7 rdf:first sg:person.0753353733.55
45 rdf:rest N5f6b17125a7f44608b366c7ea473cf4b
46 N1f14183accb74d33a9cef0ed3991f428 schema:name readcube_id
47 schema:value cb3e68010262099e8f7ee8d87ac16b25d0b968b3355cbe9447b6dfc5c3a4a750
48 rdf:type schema:PropertyValue
49 N5f6b17125a7f44608b366c7ea473cf4b rdf:first sg:person.012361147621.05
50 rdf:rest rdf:nil
51 N918e99d4890e4385bf78845e9c597960 rdf:first sg:person.0772372250.72
52 rdf:rest N06c3273afbc64297b7f6b3821838cbd7
53 Nbc7bfe2eb17d495184c9d54dd2af0d63 schema:issueNumber 3
54 rdf:type schema:PublicationIssue
55 Ndb99beeee6fa4dc6ae04034ca20ffdd3 schema:name dimensions_id
56 schema:value pub.1042667638
57 rdf:type schema:PropertyValue
58 Nf519fb722a214ce0978880bd0dc76731 schema:name doi
59 schema:value 10.1007/bf00251805
60 rdf:type schema:PropertyValue
61 Nf7feb00afb7247099503f2a9e9d8e933 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Nfa268973ffd94ea2ab370086c4905126 schema:volumeNumber 5
64 rdf:type schema:PublicationVolume
65 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
66 schema:name Earth Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
69 schema:name Atmospheric Sciences
70 rdf:type schema:DefinedTerm
71 sg:journal.1049631 schema:issn 0930-7575
72 1432-0894
73 schema:name Climate Dynamics
74 rdf:type schema:Periodical
75 sg:person.012361147621.05 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
76 schema:familyName Manabe
77 schema:givenName S
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012361147621.05
79 rdf:type schema:Person
80 sg:person.0753353733.55 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
81 schema:familyName Ramaswamy
82 schema:givenName V
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753353733.55
84 rdf:type schema:Person
85 sg:person.0772372250.72 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
86 schema:familyName Wetherald
87 schema:givenName R T
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772372250.72
89 rdf:type schema:Person
90 https://doi.org/10.1002/qj.49709239107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020359321
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1029/jd091id02p02775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013408890
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1029/rg025i004p00760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028612451
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1175/1520-0442(1989)002<0671:ngccpi>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063421274
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1175/1520-0450(1988)027<0379:tccsdo>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025741738
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1175/1520-0469(1974)031<0118:apftao>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017628581
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1175/1520-0469(1980)037<1485:ccacs>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025913012
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1175/1520-0469(1983)040<0435:ulccfa>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031817547
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1175/1520-0469(1983)040<0605:troasg>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002181559
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1175/1520-0469(1988)045<1397:cfpiag>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039004668
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1175/1520-0469(1989)046<2293:sabcca>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002569384
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1175/1520-0493(1965)093<0769:scoagc>2.3.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063451636
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1175/1520-0493(1968)096<0735:cavnmd>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063452003
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1175/1520-0493(1969)097<0739:catoc>2.3.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063452141
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1175/1520-0493(1981)109<2260:soav>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049388696
119 rdf:type schema:CreativeWork
120 https://doi.org/10.2151/jmsj1965.64a.0_151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084387900
121 rdf:type schema:CreativeWork
122 https://doi.org/10.2151/jmsj1965.65.1_151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084929181
123 rdf:type schema:CreativeWork
124 https://www.grid.ac/institutes/grid.16750.35 schema:alternateName Princeton University
125 schema:name Geophysical Fluid Dynamics Laboratory/NOAA, Princeton University, P. O. Box 308, 08542, Princeton, NJ, USA
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...