Molecular organization of the Escherichia coli gab cluster: nucleotide sequence of the structural genes gabD and gabP and expression of ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-12

AUTHORS

Eckhard Niegemann, Arno Schulz, Klaus Bartsch

ABSTRACT

We have determined the nucleotide sequences of two structural genes of the Escherichia coli gab cluster, which encodes the enzymes of the 4-aminobutyrate degradation pathway: gabD, coding for succinic semialdehyde dehydrogenase (SSDH, EC 1.2.1.16) and gabP, coding for the 4-aminobutyrate (GABA) transport carrier (GABA permease). We have previously reported the nucleotide sequence of the third structural gene of the cluster, gabT, coding for glutamate: succinic semialdehyde transaminase (EC 2.6.1.19). All three gab genes are transcribed unidirectionally and their orientation within the cluster is 5'-gabD-gabT-gabP-3'. gabT and gabP are separated by an intergenic region of 234-bp, which contains three repetitive extragenic palindromic (REP) sequences. The gabD gene consists of 1,449 nucleotides specifying a protein of 482 amino acids with a molecular mass of 51.7 kDa. The protein shows significant homologies to the NAD(+)-dependent aldehyde dehydrogenase (EC 1.2.1.3) from Aspergillus nidulans and several mammals, and to the tumor associated NADP(+)-dependent aldehyde dehydrogenase (EC 1.2.1.4) from rat. The permease gene gabP comprises 1,401 nucleotides coding a highly hydrophobic protein of 466 amino acids with a molecular mass of 51.1 kDa. The GABA permease shows features typical for an integral membrane protein and is highly homologous to the aromatic acid carrier from E. coli, the proline, arginine and histidine permeases from Saccharomyces cerevisiae and the proline transport protein from A. nidulans. Uptake of GABA was increased ca. 5-fold in transformants of E. coli containing gabP plasmids.(ABSTRACT TRUNCATED AT 250 WORDS) More... »

PAGES

454-460

References to SciGraph publications

Journal

TITLE

Archives of Microbiology

ISSUE

6

VOLUME

160

Related Patents

  • Microorganisms For The Production Of 1,4-Butanediol
  • Microorganisms And Methods For The Co-Production Of Isopropanol And 1,4-Butanediol
  • Compositions And Methods For The Biosynthesis Of 1,4-Butanediol And Its Precursors
  • Microorganisms And Methods For The Coproduction 1,4-Butanediol And Gamma-Butyrolactone
  • Semi-Synthetic Terephthalic Acid Via Microorganisms That Produce Muconic Acid
  • Microorganisms For The Production Of Methacrylic Acid
  • Microorganisms And Methods For Production Of 4-Hydroxybutyrate, 1,4-Butanediol And Related Compounds
  • Microorganisms And Methods For Conversion Of Syngas And Other Carbon Sources To Useful Products
  • Microorganisms For The Production Of Adipic Acid And Other Compounds
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Microorganisms And Methods For The Biosynthesis Of Butadiene
  • Microorganisms For The Production Of 1,4-Butanediol
  • Microorganisms And Methods For The Biosynthesis Of Propylene
  • Semi-Synthetic Terephthalic Acid Via Microorganisms That Produce Muconic Acid
  • Microorganisms And Methods For The Biosynthesis Of Adipate, Hexamethylenediamine And 6-Aminocaproic Acid
  • Process Of Separating Components Of A Fermentation Broth
  • Compositions And Methods For The Biosynthesis Of 1,4-Butanediol And Its Precursors
  • Methods For The Synthesis Of Olefins And Derivatives
  • Microorganisms And Methods For Carbon-Efficient Biosynthesis Of Mek And 2-Butanol
  • Microorganisms For The Production Of 1,4-Butanediol And Related Methods
  • Compositions And Methods For The Biosynthesis Of 1,4-Butanediol And Its Precursors
  • Microorganisms For The Production Of 2-Hydroxyisobutyric Acid
  • Microorganisms For The Production Of Methacrylic Acid
  • Microorganisms And Methods For The Coproduction 1,4-Butanediol And Gamma-Butyrolactone
  • Microorganisms And Methods For The Biosynthesis Of Fumarate, Malate, And Acrylate
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Microorganisms And Methods For The Coproduction 1,4-Butanediol And Gamma-Butyrolactone
  • Microorganisms And Methods For The Biosynthesis Of Aromatics, 2,4-Pentadienoate And 1,3-Butadiene
  • Organisms For The Production Of 1,3-Butanediol
  • Microorganisms For The Production Of Methacrylic Acid
  • Microorganisms For The Production Of 1,4-Butanediol
  • Microbial Organisms Comprising Exogenous Nucleic Acids Encoding Reductive Tca Pathway Enzymes
  • Microorganisms For The Production Of 1,4-Butanediol, 4-Hydroxybutanal, 4-Hydroxybutyryl-Coa, Putrescine And Related Compounds, And Methods Related Thereto
  • Methods And Organisms For The Growth-Coupled Production Of 1,4-Butanediol
  • Compositions And Methods For The Biosynthesis Of 1,4-Butanediol And Its Precursors
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Microorganisms For The Production Of Adipic Acid And Other Compounds
  • Primary Alcohol Producing Organisms
  • Microorganisms For The Production Of Adipic Acid And Other Compounds
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Methods For Increasing Product Yields
  • Microorganisms For The Production Of 1,4-Butanediol, 4-Hydroxybutanal, 4-Hydroxybutyryl-Coa, Putrescine And Related Compounds, And Methods Related Thereto
  • Microorganisms For The Production Of 1,4-Butanediol
  • Compositions And Methods For The Biosynthesis Of 1,4-Butanediol And Its Precursors
  • Methods And Organisms For The Growth-Coupled Production Of 1,4-Butanediol
  • Organisms For The Production Of Isopropanol, N-Butanol, And Isobutanol
  • Primary Alcohol Producing Organisms
  • Microorganisms For The Production Of 1,4-Butanediol And Related Methods
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00245306

    DOI

    http://dx.doi.org/10.1007/bf00245306

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1018768879

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/8297211


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aldehyde Oxidoreductases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacterial Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biological Transport", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carrier Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "GABA Plasma Membrane Transport Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genes, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Membrane Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Membrane Transport Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Sequence Data", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Multigene Family", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Organic Anion Transporters", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Saccharomyces cerevisiae Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Succinate-Semialdehyde Dehydrogenase", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Goethe University Frankfurt", 
              "id": "https://www.grid.ac/institutes/grid.7839.5", 
              "name": [
                "Institut f\u00fcr Mikrobiologie, Universit\u00e4t Frankfurt, D-60054, Frankfurt, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Niegemann", 
            "givenName": "Eckhard", 
            "id": "sg:person.01157247071.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157247071.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sanofi (Germany)", 
              "id": "https://www.grid.ac/institutes/grid.420214.1", 
              "name": [
                "Hoechst AG, D-65926, Frankfurt, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schulz", 
            "givenName": "Arno", 
            "id": "sg:person.01002527061.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002527061.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sanofi (Germany)", 
              "id": "https://www.grid.ac/institutes/grid.420214.1", 
              "name": [
                "Hoechst AG, D-65926, Frankfurt, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bartsch", 
            "givenName": "Klaus", 
            "id": "sg:person.01175426370.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175426370.24"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0022-2836(82)90515-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001452096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(89)90413-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005979339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(89)90413-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005979339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(86)90358-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006610949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(86)90358-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006610949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.85.6.1782", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007742396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(85)90219-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008392396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(85)90219-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008392396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/18.3.653", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011180316"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/283541a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015952275", 
              "https://doi.org/10.1038/283541a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2958.1989.tb00219.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022365880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00261677", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024901660", 
              "https://doi.org/10.1007/bf00261677"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00261677", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024901660", 
              "https://doi.org/10.1007/bf00261677"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.74.12.5463", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025360556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(84)90153-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029535594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(84)90153-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029535594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(87)90310-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033525112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(87)90310-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033525112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/9.2.309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040425653"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.80.24.7461", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041457321"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1432-1033.1989.tb14616.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042053950"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(84)90436-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042178000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0888-7543(88)90109-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052795572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/dna.1985.4.165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059250754"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.171.12.6853-6858.1989", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062717584"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.172.12.7035-7042.1990", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062718553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.172.6.3214-3220.1990", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062718968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.172.6.3250-3256.1990", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062718973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/oxfordjournals.jbchem.a123264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078383258"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078427618", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078427630", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078786924", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079212564", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079415064", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1080022352", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1080434413", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1080435766", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1080460466", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1081566628", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/j.1460-2075.1984.tb01986.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1081710958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082116021", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1993-12", 
        "datePublishedReg": "1993-12-01", 
        "description": "We have determined the nucleotide sequences of two structural genes of the Escherichia coli gab cluster, which encodes the enzymes of the 4-aminobutyrate degradation pathway: gabD, coding for succinic semialdehyde dehydrogenase (SSDH, EC 1.2.1.16) and gabP, coding for the 4-aminobutyrate (GABA) transport carrier (GABA permease). We have previously reported the nucleotide sequence of the third structural gene of the cluster, gabT, coding for glutamate: succinic semialdehyde transaminase (EC 2.6.1.19). All three gab genes are transcribed unidirectionally and their orientation within the cluster is 5'-gabD-gabT-gabP-3'. gabT and gabP are separated by an intergenic region of 234-bp, which contains three repetitive extragenic palindromic (REP) sequences. The gabD gene consists of 1,449 nucleotides specifying a protein of 482 amino acids with a molecular mass of 51.7 kDa. The protein shows significant homologies to the NAD(+)-dependent aldehyde dehydrogenase (EC 1.2.1.3) from Aspergillus nidulans and several mammals, and to the tumor associated NADP(+)-dependent aldehyde dehydrogenase (EC 1.2.1.4) from rat. The permease gene gabP comprises 1,401 nucleotides coding a highly hydrophobic protein of 466 amino acids with a molecular mass of 51.1 kDa. The GABA permease shows features typical for an integral membrane protein and is highly homologous to the aromatic acid carrier from E. coli, the proline, arginine and histidine permeases from Saccharomyces cerevisiae and the proline transport protein from A. nidulans. Uptake of GABA was increased ca. 5-fold in transformants of E. coli containing gabP plasmids.(ABSTRACT TRUNCATED AT 250 WORDS)", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf00245306", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018945", 
            "issn": [
              "0302-8933", 
              "1432-072X"
            ], 
            "name": "Archives of Microbiology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "160"
          }
        ], 
        "name": "Molecular organization of the Escherichia coli gab cluster: nucleotide sequence of the structural genes gabD and gabP and expression of the GABA permease gene", 
        "pagination": "454-460", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "596d5ae216b7c9c7e36ec395ce5210d03d5091bc985110cdf0805a68d559eb46"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "8297211"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410427"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00245306"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1018768879"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00245306", 
          "https://app.dimensions.ai/details/publication/pub.1018768879"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130829_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF00245306"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00245306'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00245306'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00245306'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00245306'


     

    This table displays all metadata directly associated to this object as RDF triples.

    254 TRIPLES      21 PREDICATES      82 URIs      39 LITERALS      27 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00245306 schema:about N05b0a08c85f5409aa37d05c88fd18c10
    2 N19790f9251494a9bad6188da9dd87e9b
    3 N2b99bc3c12ff419aaf462ca0b382d7bd
    4 N4281b91ca269450eafe004cda61ba0f0
    5 N62aa30d23dcc4be7b93483890da4053c
    6 N69991ad9ab854594b428a68435b38c84
    7 N6cb6102905a04a3580b4d3f449331b8a
    8 N79afe948ecab416592bafb18099dcc1e
    9 N81706925434a490d8c927cae9e17ca66
    10 N828ade055d3c46bc9a781b275cff181f
    11 Nb45e0f25d6c54993adc139fcf2248cc8
    12 Nbdd4633b1e9f412db5e503ad087745aa
    13 Nc22293db02724b87a8ab984ac924cf7c
    14 Ncbb5596b630248e289ffd2c5d2c6d103
    15 Nd188a925162343228e7445d649c08716
    16 Nde97988b033a45e1b004051d8cb98f72
    17 Nf52c8cc8bddd41e48ac96b33e207e003
    18 Nf7c239d3832549729d6edbbcf53549ee
    19 anzsrc-for:06
    20 anzsrc-for:0601
    21 schema:author Ne1550a5a41a74f7cb7c64476b479538e
    22 schema:citation sg:pub.10.1007/bf00261677
    23 sg:pub.10.1038/283541a0
    24 https://app.dimensions.ai/details/publication/pub.1078427618
    25 https://app.dimensions.ai/details/publication/pub.1078427630
    26 https://app.dimensions.ai/details/publication/pub.1078786924
    27 https://app.dimensions.ai/details/publication/pub.1079212564
    28 https://app.dimensions.ai/details/publication/pub.1079415064
    29 https://app.dimensions.ai/details/publication/pub.1080022352
    30 https://app.dimensions.ai/details/publication/pub.1080434413
    31 https://app.dimensions.ai/details/publication/pub.1080435766
    32 https://app.dimensions.ai/details/publication/pub.1080460466
    33 https://app.dimensions.ai/details/publication/pub.1081566628
    34 https://app.dimensions.ai/details/publication/pub.1082116021
    35 https://doi.org/10.1002/j.1460-2075.1984.tb01986.x
    36 https://doi.org/10.1016/0022-2836(82)90515-0
    37 https://doi.org/10.1016/0092-8674(84)90436-7
    38 https://doi.org/10.1016/0378-1119(84)90153-7
    39 https://doi.org/10.1016/0378-1119(85)90219-7
    40 https://doi.org/10.1016/0378-1119(86)90358-6
    41 https://doi.org/10.1016/0378-1119(87)90310-6
    42 https://doi.org/10.1016/0378-1119(89)90413-7
    43 https://doi.org/10.1016/0888-7543(88)90109-7
    44 https://doi.org/10.1073/pnas.74.12.5463
    45 https://doi.org/10.1073/pnas.80.24.7461
    46 https://doi.org/10.1073/pnas.85.6.1782
    47 https://doi.org/10.1089/dna.1985.4.165
    48 https://doi.org/10.1093/nar/18.3.653
    49 https://doi.org/10.1093/nar/9.2.309
    50 https://doi.org/10.1093/oxfordjournals.jbchem.a123264
    51 https://doi.org/10.1111/j.1365-2958.1989.tb00219.x
    52 https://doi.org/10.1111/j.1432-1033.1989.tb14616.x
    53 https://doi.org/10.1128/jb.171.12.6853-6858.1989
    54 https://doi.org/10.1128/jb.172.12.7035-7042.1990
    55 https://doi.org/10.1128/jb.172.6.3214-3220.1990
    56 https://doi.org/10.1128/jb.172.6.3250-3256.1990
    57 schema:datePublished 1993-12
    58 schema:datePublishedReg 1993-12-01
    59 schema:description We have determined the nucleotide sequences of two structural genes of the Escherichia coli gab cluster, which encodes the enzymes of the 4-aminobutyrate degradation pathway: gabD, coding for succinic semialdehyde dehydrogenase (SSDH, EC 1.2.1.16) and gabP, coding for the 4-aminobutyrate (GABA) transport carrier (GABA permease). We have previously reported the nucleotide sequence of the third structural gene of the cluster, gabT, coding for glutamate: succinic semialdehyde transaminase (EC 2.6.1.19). All three gab genes are transcribed unidirectionally and their orientation within the cluster is 5'-gabD-gabT-gabP-3'. gabT and gabP are separated by an intergenic region of 234-bp, which contains three repetitive extragenic palindromic (REP) sequences. The gabD gene consists of 1,449 nucleotides specifying a protein of 482 amino acids with a molecular mass of 51.7 kDa. The protein shows significant homologies to the NAD(+)-dependent aldehyde dehydrogenase (EC 1.2.1.3) from Aspergillus nidulans and several mammals, and to the tumor associated NADP(+)-dependent aldehyde dehydrogenase (EC 1.2.1.4) from rat. The permease gene gabP comprises 1,401 nucleotides coding a highly hydrophobic protein of 466 amino acids with a molecular mass of 51.1 kDa. The GABA permease shows features typical for an integral membrane protein and is highly homologous to the aromatic acid carrier from E. coli, the proline, arginine and histidine permeases from Saccharomyces cerevisiae and the proline transport protein from A. nidulans. Uptake of GABA was increased ca. 5-fold in transformants of E. coli containing gabP plasmids.(ABSTRACT TRUNCATED AT 250 WORDS)
    60 schema:genre research_article
    61 schema:inLanguage en
    62 schema:isAccessibleForFree false
    63 schema:isPartOf N055e9f18fb5e4b90ba99491037d13900
    64 N84d2c28487404ed3a4574a03893ac7e0
    65 sg:journal.1018945
    66 schema:name Molecular organization of the Escherichia coli gab cluster: nucleotide sequence of the structural genes gabD and gabP and expression of the GABA permease gene
    67 schema:pagination 454-460
    68 schema:productId N27b9857d7f22434bba392cbb2ee4bd6a
    69 N4578c123de5d4ace92ffb2a733ad301c
    70 N883af676cebe4078b9753055ffc6c92c
    71 Naaf2aa074c77480887a811a330c99538
    72 Nc788f15899db44218ed96ce829ee55b0
    73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018768879
    74 https://doi.org/10.1007/bf00245306
    75 schema:sdDatePublished 2019-04-11T14:00
    76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    77 schema:sdPublisher N575d91ba8a8e40cc85e63f93f3c76082
    78 schema:url http://link.springer.com/10.1007/BF00245306
    79 sgo:license sg:explorer/license/
    80 sgo:sdDataset articles
    81 rdf:type schema:ScholarlyArticle
    82 N055e9f18fb5e4b90ba99491037d13900 schema:issueNumber 6
    83 rdf:type schema:PublicationIssue
    84 N05b0a08c85f5409aa37d05c88fd18c10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    85 schema:name Bacterial Proteins
    86 rdf:type schema:DefinedTerm
    87 N19790f9251494a9bad6188da9dd87e9b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name GABA Plasma Membrane Transport Proteins
    89 rdf:type schema:DefinedTerm
    90 N27b9857d7f22434bba392cbb2ee4bd6a schema:name nlm_unique_id
    91 schema:value 0410427
    92 rdf:type schema:PropertyValue
    93 N2b99bc3c12ff419aaf462ca0b382d7bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Membrane Transport Proteins
    95 rdf:type schema:DefinedTerm
    96 N3bbb986cc8234312a334e675b14d9e8a rdf:first sg:person.01175426370.24
    97 rdf:rest rdf:nil
    98 N4281b91ca269450eafe004cda61ba0f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Aldehyde Oxidoreductases
    100 rdf:type schema:DefinedTerm
    101 N4578c123de5d4ace92ffb2a733ad301c schema:name dimensions_id
    102 schema:value pub.1018768879
    103 rdf:type schema:PropertyValue
    104 N575d91ba8a8e40cc85e63f93f3c76082 schema:name Springer Nature - SN SciGraph project
    105 rdf:type schema:Organization
    106 N62aa30d23dcc4be7b93483890da4053c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Succinate-Semialdehyde Dehydrogenase
    108 rdf:type schema:DefinedTerm
    109 N69991ad9ab854594b428a68435b38c84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Organic Anion Transporters
    111 rdf:type schema:DefinedTerm
    112 N6cb6102905a04a3580b4d3f449331b8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Saccharomyces cerevisiae Proteins
    114 rdf:type schema:DefinedTerm
    115 N79afe948ecab416592bafb18099dcc1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Molecular Sequence Data
    117 rdf:type schema:DefinedTerm
    118 N81706925434a490d8c927cae9e17ca66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Multigene Family
    120 rdf:type schema:DefinedTerm
    121 N828ade055d3c46bc9a781b275cff181f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Base Sequence
    123 rdf:type schema:DefinedTerm
    124 N84d2c28487404ed3a4574a03893ac7e0 schema:volumeNumber 160
    125 rdf:type schema:PublicationVolume
    126 N883af676cebe4078b9753055ffc6c92c schema:name doi
    127 schema:value 10.1007/bf00245306
    128 rdf:type schema:PropertyValue
    129 N98a459595971495eb38cbf9c4c58af52 rdf:first sg:person.01002527061.23
    130 rdf:rest N3bbb986cc8234312a334e675b14d9e8a
    131 Naaf2aa074c77480887a811a330c99538 schema:name readcube_id
    132 schema:value 596d5ae216b7c9c7e36ec395ce5210d03d5091bc985110cdf0805a68d559eb46
    133 rdf:type schema:PropertyValue
    134 Nb45e0f25d6c54993adc139fcf2248cc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name DNA, Bacterial
    136 rdf:type schema:DefinedTerm
    137 Nbdd4633b1e9f412db5e503ad087745aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Carrier Proteins
    139 rdf:type schema:DefinedTerm
    140 Nc22293db02724b87a8ab984ac924cf7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Escherichia coli
    142 rdf:type schema:DefinedTerm
    143 Nc788f15899db44218ed96ce829ee55b0 schema:name pubmed_id
    144 schema:value 8297211
    145 rdf:type schema:PropertyValue
    146 Ncbb5596b630248e289ffd2c5d2c6d103 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Escherichia coli Proteins
    148 rdf:type schema:DefinedTerm
    149 Nd188a925162343228e7445d649c08716 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Gene Expression
    151 rdf:type schema:DefinedTerm
    152 Nde97988b033a45e1b004051d8cb98f72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Genes, Bacterial
    154 rdf:type schema:DefinedTerm
    155 Ne1550a5a41a74f7cb7c64476b479538e rdf:first sg:person.01157247071.75
    156 rdf:rest N98a459595971495eb38cbf9c4c58af52
    157 Nf52c8cc8bddd41e48ac96b33e207e003 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Biological Transport
    159 rdf:type schema:DefinedTerm
    160 Nf7c239d3832549729d6edbbcf53549ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Membrane Proteins
    162 rdf:type schema:DefinedTerm
    163 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    164 schema:name Biological Sciences
    165 rdf:type schema:DefinedTerm
    166 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    167 schema:name Biochemistry and Cell Biology
    168 rdf:type schema:DefinedTerm
    169 sg:journal.1018945 schema:issn 0302-8933
    170 1432-072X
    171 schema:name Archives of Microbiology
    172 rdf:type schema:Periodical
    173 sg:person.01002527061.23 schema:affiliation https://www.grid.ac/institutes/grid.420214.1
    174 schema:familyName Schulz
    175 schema:givenName Arno
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002527061.23
    177 rdf:type schema:Person
    178 sg:person.01157247071.75 schema:affiliation https://www.grid.ac/institutes/grid.7839.5
    179 schema:familyName Niegemann
    180 schema:givenName Eckhard
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157247071.75
    182 rdf:type schema:Person
    183 sg:person.01175426370.24 schema:affiliation https://www.grid.ac/institutes/grid.420214.1
    184 schema:familyName Bartsch
    185 schema:givenName Klaus
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175426370.24
    187 rdf:type schema:Person
    188 sg:pub.10.1007/bf00261677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024901660
    189 https://doi.org/10.1007/bf00261677
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/283541a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015952275
    192 https://doi.org/10.1038/283541a0
    193 rdf:type schema:CreativeWork
    194 https://app.dimensions.ai/details/publication/pub.1078427618 schema:CreativeWork
    195 https://app.dimensions.ai/details/publication/pub.1078427630 schema:CreativeWork
    196 https://app.dimensions.ai/details/publication/pub.1078786924 schema:CreativeWork
    197 https://app.dimensions.ai/details/publication/pub.1079212564 schema:CreativeWork
    198 https://app.dimensions.ai/details/publication/pub.1079415064 schema:CreativeWork
    199 https://app.dimensions.ai/details/publication/pub.1080022352 schema:CreativeWork
    200 https://app.dimensions.ai/details/publication/pub.1080434413 schema:CreativeWork
    201 https://app.dimensions.ai/details/publication/pub.1080435766 schema:CreativeWork
    202 https://app.dimensions.ai/details/publication/pub.1080460466 schema:CreativeWork
    203 https://app.dimensions.ai/details/publication/pub.1081566628 schema:CreativeWork
    204 https://app.dimensions.ai/details/publication/pub.1082116021 schema:CreativeWork
    205 https://doi.org/10.1002/j.1460-2075.1984.tb01986.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1081710958
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1016/0022-2836(82)90515-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001452096
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1016/0092-8674(84)90436-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042178000
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1016/0378-1119(84)90153-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029535594
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1016/0378-1119(85)90219-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008392396
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1016/0378-1119(86)90358-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006610949
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1016/0378-1119(87)90310-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033525112
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1016/0378-1119(89)90413-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005979339
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1016/0888-7543(88)90109-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052795572
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1073/pnas.74.12.5463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025360556
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1073/pnas.80.24.7461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041457321
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1073/pnas.85.6.1782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007742396
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1089/dna.1985.4.165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059250754
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1093/nar/18.3.653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011180316
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1093/nar/9.2.309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040425653
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1093/oxfordjournals.jbchem.a123264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078383258
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1111/j.1365-2958.1989.tb00219.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022365880
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1111/j.1432-1033.1989.tb14616.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042053950
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1128/jb.171.12.6853-6858.1989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062717584
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1128/jb.172.12.7035-7042.1990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062718553
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1128/jb.172.6.3214-3220.1990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062718968
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1128/jb.172.6.3250-3256.1990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062718973
    248 rdf:type schema:CreativeWork
    249 https://www.grid.ac/institutes/grid.420214.1 schema:alternateName Sanofi (Germany)
    250 schema:name Hoechst AG, D-65926, Frankfurt, Germany
    251 rdf:type schema:Organization
    252 https://www.grid.ac/institutes/grid.7839.5 schema:alternateName Goethe University Frankfurt
    253 schema:name Institut für Mikrobiologie, Universität Frankfurt, D-60054, Frankfurt, Germany
    254 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...