1988-09
AUTHORS ABSTRACTWe present a semi-decision algorithm for the unifiability of two set-theoretic formulas modulo λ-reduction. The algorithm is based on the approach developed by G. Huet for type theory, but requires additional measures because formulas in set theory are not all normalizable. We present the algorithm in an Ada-like pseudocode, and then prove two theorems that show the completeness and correctness of the procedure. We conclude by showing that λ-unification is not a complete quantifier substitution method for set theory-unlile first-order unification and first-order logic. In this respect set theory is similar to type theory (higher-order logic). More... »
PAGES269-286
http://scigraph.springernature.com/pub.10.1007/bf00244943
DOIhttp://dx.doi.org/10.1007/bf00244943
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1017454428
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Psychology and Cognitive Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1702",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Cognitive Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Computer Technology Associates, Suite 201, 14900 Sweitzer Lane, 20707, Laurel, MD, USA",
"id": "http://www.grid.ac/institutes/grid.433150.0",
"name": [
"Computer Technology Associates, Suite 201, 14900 Sweitzer Lane, 20707, Laurel, MD, USA"
],
"type": "Organization"
},
"familyName": "Bailin",
"givenName": "Sidney C.",
"id": "sg:person.011667755735.32",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011667755735.32"
],
"type": "Person"
}
],
"datePublished": "1988-09",
"datePublishedReg": "1988-09-01",
"description": "We present a semi-decision algorithm for the unifiability of two set-theoretic formulas modulo \u03bb-reduction. The algorithm is based on the approach developed by G. Huet for type theory, but requires additional measures because formulas in set theory are not all normalizable. We present the algorithm in an Ada-like pseudocode, and then prove two theorems that show the completeness and correctness of the procedure. We conclude by showing that \u03bb-unification is not a complete quantifier substitution method for set theory-unlile first-order unification and first-order logic. In this respect set theory is similar to type theory (higher-order logic).",
"genre": "article",
"id": "sg:pub.10.1007/bf00244943",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136522",
"issn": [
"0168-7433",
"1573-0670"
],
"name": "Journal of Automated Reasoning",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "4"
}
],
"keywords": [
"type theory",
"first-order logic",
"theory",
"set theory",
"unification",
"unifiability",
"Huet",
"logic",
"respect",
"approach",
"completeness",
"additional measures",
"correctness",
"algorithm",
"measures",
"formula",
"theorem",
"procedure",
"substitution method",
"method",
"semi-decision algorithm",
"pseudocode",
"first-order unification",
"reduction",
"test"
],
"name": "A \u03bb-unifiability test for set theory",
"pagination": "269-286",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1017454428"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf00244943"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf00244943",
"https://app.dimensions.ai/details/publication/pub.1017454428"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T21:59",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_193.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf00244943"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00244943'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00244943'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00244943'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00244943'
This table displays all metadata directly associated to this object as RDF triples.
95 TRIPLES
21 PREDICATES
54 URIs
43 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf00244943 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0801 |
3 | ″ | ″ | anzsrc-for:0802 |
4 | ″ | ″ | anzsrc-for:17 |
5 | ″ | ″ | anzsrc-for:1702 |
6 | ″ | schema:author | Nb86c2e41af664c9c8d3f0cd94c3bfedb |
7 | ″ | schema:datePublished | 1988-09 |
8 | ″ | schema:datePublishedReg | 1988-09-01 |
9 | ″ | schema:description | We present a semi-decision algorithm for the unifiability of two set-theoretic formulas modulo λ-reduction. The algorithm is based on the approach developed by G. Huet for type theory, but requires additional measures because formulas in set theory are not all normalizable. We present the algorithm in an Ada-like pseudocode, and then prove two theorems that show the completeness and correctness of the procedure. We conclude by showing that λ-unification is not a complete quantifier substitution method for set theory-unlile first-order unification and first-order logic. In this respect set theory is similar to type theory (higher-order logic). |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N102c613649ec4c0c96f0b65bb4de2d98 |
14 | ″ | ″ | Na6ca7cefecf146e29cca349fe44ca104 |
15 | ″ | ″ | sg:journal.1136522 |
16 | ″ | schema:keywords | Huet |
17 | ″ | ″ | additional measures |
18 | ″ | ″ | algorithm |
19 | ″ | ″ | approach |
20 | ″ | ″ | completeness |
21 | ″ | ″ | correctness |
22 | ″ | ″ | first-order logic |
23 | ″ | ″ | first-order unification |
24 | ″ | ″ | formula |
25 | ″ | ″ | logic |
26 | ″ | ″ | measures |
27 | ″ | ″ | method |
28 | ″ | ″ | procedure |
29 | ″ | ″ | pseudocode |
30 | ″ | ″ | reduction |
31 | ″ | ″ | respect |
32 | ″ | ″ | semi-decision algorithm |
33 | ″ | ″ | set theory |
34 | ″ | ″ | substitution method |
35 | ″ | ″ | test |
36 | ″ | ″ | theorem |
37 | ″ | ″ | theory |
38 | ″ | ″ | type theory |
39 | ″ | ″ | unifiability |
40 | ″ | ″ | unification |
41 | ″ | schema:name | A λ-unifiability test for set theory |
42 | ″ | schema:pagination | 269-286 |
43 | ″ | schema:productId | N80759ffab73f4960b0ae443b3f8cf7b2 |
44 | ″ | ″ | N913f70aa021f402ab691a44cdf2bed8c |
45 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1017454428 |
46 | ″ | ″ | https://doi.org/10.1007/bf00244943 |
47 | ″ | schema:sdDatePublished | 2022-06-01T21:59 |
48 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
49 | ″ | schema:sdPublisher | N07243363c61b49758860d1f04468cb7d |
50 | ″ | schema:url | https://doi.org/10.1007/bf00244943 |
51 | ″ | sgo:license | sg:explorer/license/ |
52 | ″ | sgo:sdDataset | articles |
53 | ″ | rdf:type | schema:ScholarlyArticle |
54 | N07243363c61b49758860d1f04468cb7d | schema:name | Springer Nature - SN SciGraph project |
55 | ″ | rdf:type | schema:Organization |
56 | N102c613649ec4c0c96f0b65bb4de2d98 | schema:issueNumber | 3 |
57 | ″ | rdf:type | schema:PublicationIssue |
58 | N80759ffab73f4960b0ae443b3f8cf7b2 | schema:name | dimensions_id |
59 | ″ | schema:value | pub.1017454428 |
60 | ″ | rdf:type | schema:PropertyValue |
61 | N913f70aa021f402ab691a44cdf2bed8c | schema:name | doi |
62 | ″ | schema:value | 10.1007/bf00244943 |
63 | ″ | rdf:type | schema:PropertyValue |
64 | Na6ca7cefecf146e29cca349fe44ca104 | schema:volumeNumber | 4 |
65 | ″ | rdf:type | schema:PublicationVolume |
66 | Nb86c2e41af664c9c8d3f0cd94c3bfedb | rdf:first | sg:person.011667755735.32 |
67 | ″ | rdf:rest | rdf:nil |
68 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
69 | ″ | schema:name | Information and Computing Sciences |
70 | ″ | rdf:type | schema:DefinedTerm |
71 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
72 | ″ | schema:name | Artificial Intelligence and Image Processing |
73 | ″ | rdf:type | schema:DefinedTerm |
74 | anzsrc-for:0802 | schema:inDefinedTermSet | anzsrc-for: |
75 | ″ | schema:name | Computation Theory and Mathematics |
76 | ″ | rdf:type | schema:DefinedTerm |
77 | anzsrc-for:17 | schema:inDefinedTermSet | anzsrc-for: |
78 | ″ | schema:name | Psychology and Cognitive Sciences |
79 | ″ | rdf:type | schema:DefinedTerm |
80 | anzsrc-for:1702 | schema:inDefinedTermSet | anzsrc-for: |
81 | ″ | schema:name | Cognitive Sciences |
82 | ″ | rdf:type | schema:DefinedTerm |
83 | sg:journal.1136522 | schema:issn | 0168-7433 |
84 | ″ | ″ | 1573-0670 |
85 | ″ | schema:name | Journal of Automated Reasoning |
86 | ″ | schema:publisher | Springer Nature |
87 | ″ | rdf:type | schema:Periodical |
88 | sg:person.011667755735.32 | schema:affiliation | grid-institutes:grid.433150.0 |
89 | ″ | schema:familyName | Bailin |
90 | ″ | schema:givenName | Sidney C. |
91 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011667755735.32 |
92 | ″ | rdf:type | schema:Person |
93 | grid-institutes:grid.433150.0 | schema:alternateName | Computer Technology Associates, Suite 201, 14900 Sweitzer Lane, 20707, Laurel, MD, USA |
94 | ″ | schema:name | Computer Technology Associates, Suite 201, 14900 Sweitzer Lane, 20707, Laurel, MD, USA |
95 | ″ | rdf:type | schema:Organization |