Electromyographic correlates of the transition from aerobic to anaerobic metabolism in treadmill running View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-12

AUTHORS

A. D. Taylor, R. Bronks

ABSTRACT

This study analysed the changes in electromyographic (EMG) activity of the vastus lateralis, biceps femoris and gastrocnemius muscles during incremental treadmill running. The changes in EMG were related to the lactate and ventilatory thresholds. Ten trained subjects participated in the study. Minute ventilation, oxygen consumption, carbon dioxide expired and the fraction of oxygen in the expired gas were recorded continuously. Venous blood samples were collected at each exercise intensity and analysed for lactate concentration. The EMG were recorded at the end of each exercise intensity using surface electrodes. The EMG were quantified through integration (iEMG) and by calculating the mean power frequency (MPF). The iEMG measurements were characterized by a breakpoint in the vastus lateralis and/or gastrocnemius muscles in eight of the subjects tested. However, the results indicated that blood lactate concentrations had already begun to increase in a nonlinear fashion before the iEMG breakpoint had been surpassed. Consequently, the occurence of the lactate threshold cannot be attributed solely to the change in motor unit recruitment or rate coding patterns demonstrated by the iEMG breakpoint. The ventilatory threshold was shown to be a far more reliable and convenient noninvasive predictor of the lactate threshold in comparison with EMG techniques. In conclusion, the EMG measurements used in this study (i.e. iEMG and MPF) were not considered to be viable noninvasive determinants of the aerobic-anaerobic transition phase in treadmill running. More... »

PAGES

508-515

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00239868

DOI

http://dx.doi.org/10.1007/bf00239868

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035397129

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/7713071


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Gas Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electromyography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exercise", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lactates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lactic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscle Contraction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscle, Skeletal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Running", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centre for Human Movement and Sports Management, Southern Cross University, 2480, Lismore, NSW, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1031.3", 
          "name": [
            "Centre for Human Movement and Sports Management, Southern Cross University, 2480, Lismore, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taylor", 
        "givenName": "A. D.", 
        "id": "sg:person.0703145141.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703145141.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Human Movement and Sports Management, Southern Cross University, 2480, Lismore, NSW, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1031.3", 
          "name": [
            "Centre for Human Movement and Sports Management, Southern Cross University, 2480, Lismore, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bronks", 
        "givenName": "R.", 
        "id": "sg:person.01204012306.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204012306.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00952241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026508436", 
          "https://doi.org/10.1007/bf00952241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00422448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038884864", 
          "https://doi.org/10.1007/bf00422448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00357919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046072197", 
          "https://doi.org/10.1007/bf00357919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00690890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052134459", 
          "https://doi.org/10.1007/bf00690890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00421697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011106507", 
          "https://doi.org/10.1007/bf00421697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00424804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001538897", 
          "https://doi.org/10.1007/bf00424804"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-12", 
    "datePublishedReg": "1994-12-01", 
    "description": "This study analysed the changes in electromyographic (EMG) activity of the vastus lateralis, biceps femoris and gastrocnemius muscles during incremental treadmill running. The changes in EMG were related to the lactate and ventilatory thresholds. Ten trained subjects participated in the study. Minute ventilation, oxygen consumption, carbon dioxide expired and the fraction of oxygen in the expired gas were recorded continuously. Venous blood samples were collected at each exercise intensity and analysed for lactate concentration. The EMG were recorded at the end of each exercise intensity using surface electrodes. The EMG were quantified through integration (iEMG) and by calculating the mean power frequency (MPF). The iEMG measurements were characterized by a breakpoint in the vastus lateralis and/or gastrocnemius muscles in eight of the subjects tested. However, the results indicated that blood lactate concentrations had already begun to increase in a nonlinear fashion before the iEMG breakpoint had been surpassed. Consequently, the occurence of the lactate threshold cannot be attributed solely to the change in motor unit recruitment or rate coding patterns demonstrated by the iEMG breakpoint. The ventilatory threshold was shown to be a far more reliable and convenient noninvasive predictor of the lactate threshold in comparison with EMG techniques. In conclusion, the EMG measurements used in this study (i.e. iEMG and MPF) were not considered to be viable noninvasive determinants of the aerobic-anaerobic transition phase in treadmill running.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00239868", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1319730", 
        "issn": [
          "1439-6319", 
          "1432-1025"
        ], 
        "name": "European Journal of Applied Physiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "69"
      }
    ], 
    "keywords": [
      "mean power frequency", 
      "gastrocnemius muscle", 
      "vastus lateralis", 
      "exercise intensity", 
      "treadmill running", 
      "lactate concentration", 
      "lactate threshold", 
      "venous blood samples", 
      "blood lactate concentration", 
      "motor unit recruitment", 
      "noninvasive determinants", 
      "incremental treadmill running", 
      "noninvasive predictor", 
      "minute ventilation", 
      "electromyographic activity", 
      "blood samples", 
      "unit recruitment", 
      "ventilatory threshold", 
      "EMG techniques", 
      "electromyographic correlates", 
      "surface electrodes", 
      "EMG", 
      "oxygen consumption", 
      "EMG measurements", 
      "lateralis", 
      "muscle", 
      "fraction of oxygen", 
      "subjects", 
      "ventilatory", 
      "femoris", 
      "breakpoints", 
      "treadmill", 
      "study", 
      "ventilation", 
      "predictors", 
      "lactate", 
      "power frequency", 
      "metabolism", 
      "changes", 
      "correlates", 
      "conclusion", 
      "threshold", 
      "concentration", 
      "running", 
      "recruitment", 
      "determinants", 
      "activity", 
      "nonlinear fashion", 
      "fashion", 
      "frequency", 
      "patterns", 
      "transition phase", 
      "samples", 
      "intensity", 
      "occurence", 
      "consumption", 
      "fraction", 
      "end", 
      "comparison", 
      "measurements", 
      "results", 
      "technique", 
      "coding pattern", 
      "oxygen", 
      "phase", 
      "carbon dioxide", 
      "integration", 
      "transition", 
      "electrode", 
      "dioxide", 
      "gas"
    ], 
    "name": "Electromyographic correlates of the transition from aerobic to anaerobic metabolism in treadmill running", 
    "pagination": "508-515", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035397129"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00239868"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "7713071"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00239868", 
      "https://app.dimensions.ai/details/publication/pub.1035397129"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_232.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00239868"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00239868'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00239868'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00239868'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00239868'


 

This table displays all metadata directly associated to this object as RDF triples.

211 TRIPLES      21 PREDICATES      115 URIs      101 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00239868 schema:about N3a7031100f6c4b5484587970a87b1a48
2 N5124c0f0fe0d4de78456c6deb24107e2
3 N58ab3642e58b4ebfab26fd0abf52e783
4 N6665377ee36c4c6cb9deed416be53c35
5 N68b83bfd83ed45668f294f81353e698e
6 N6e12c52cbbf24844a9d5e481924aa689
7 N80baf921b1064de3b5e8501b9b79931f
8 Nb8a172c5b5e14faaaa704f8f5c02f2b2
9 Nbb02c2a40e1e4ffc8dd83f527ffa7e03
10 Ne18399d2296842cbac5a8b6032932fc8
11 Ne9d7ad0ae2724094a35d3369e1d82fe8
12 Nf36ebe04d924402ebd8a6bb04a00d811
13 anzsrc-for:11
14 anzsrc-for:1103
15 schema:author N6ba4402fb95b40f7a51a8c0bd3c15585
16 schema:citation sg:pub.10.1007/bf00357919
17 sg:pub.10.1007/bf00421697
18 sg:pub.10.1007/bf00422448
19 sg:pub.10.1007/bf00424804
20 sg:pub.10.1007/bf00690890
21 sg:pub.10.1007/bf00952241
22 schema:datePublished 1994-12
23 schema:datePublishedReg 1994-12-01
24 schema:description This study analysed the changes in electromyographic (EMG) activity of the vastus lateralis, biceps femoris and gastrocnemius muscles during incremental treadmill running. The changes in EMG were related to the lactate and ventilatory thresholds. Ten trained subjects participated in the study. Minute ventilation, oxygen consumption, carbon dioxide expired and the fraction of oxygen in the expired gas were recorded continuously. Venous blood samples were collected at each exercise intensity and analysed for lactate concentration. The EMG were recorded at the end of each exercise intensity using surface electrodes. The EMG were quantified through integration (iEMG) and by calculating the mean power frequency (MPF). The iEMG measurements were characterized by a breakpoint in the vastus lateralis and/or gastrocnemius muscles in eight of the subjects tested. However, the results indicated that blood lactate concentrations had already begun to increase in a nonlinear fashion before the iEMG breakpoint had been surpassed. Consequently, the occurence of the lactate threshold cannot be attributed solely to the change in motor unit recruitment or rate coding patterns demonstrated by the iEMG breakpoint. The ventilatory threshold was shown to be a far more reliable and convenient noninvasive predictor of the lactate threshold in comparison with EMG techniques. In conclusion, the EMG measurements used in this study (i.e. iEMG and MPF) were not considered to be viable noninvasive determinants of the aerobic-anaerobic transition phase in treadmill running.
25 schema:genre article
26 schema:isAccessibleForFree false
27 schema:isPartOf Nb255be1b2469448d955a3c98a75cfc67
28 Nc1f6cca1c7724dc9b320839c12a3fb76
29 sg:journal.1319730
30 schema:keywords EMG
31 EMG measurements
32 EMG techniques
33 activity
34 blood lactate concentration
35 blood samples
36 breakpoints
37 carbon dioxide
38 changes
39 coding pattern
40 comparison
41 concentration
42 conclusion
43 consumption
44 correlates
45 determinants
46 dioxide
47 electrode
48 electromyographic activity
49 electromyographic correlates
50 end
51 exercise intensity
52 fashion
53 femoris
54 fraction
55 fraction of oxygen
56 frequency
57 gas
58 gastrocnemius muscle
59 incremental treadmill running
60 integration
61 intensity
62 lactate
63 lactate concentration
64 lactate threshold
65 lateralis
66 mean power frequency
67 measurements
68 metabolism
69 minute ventilation
70 motor unit recruitment
71 muscle
72 noninvasive determinants
73 noninvasive predictor
74 nonlinear fashion
75 occurence
76 oxygen
77 oxygen consumption
78 patterns
79 phase
80 power frequency
81 predictors
82 recruitment
83 results
84 running
85 samples
86 study
87 subjects
88 surface electrodes
89 technique
90 threshold
91 transition
92 transition phase
93 treadmill
94 treadmill running
95 unit recruitment
96 vastus lateralis
97 venous blood samples
98 ventilation
99 ventilatory
100 ventilatory threshold
101 schema:name Electromyographic correlates of the transition from aerobic to anaerobic metabolism in treadmill running
102 schema:pagination 508-515
103 schema:productId N858dcd76495d4be8a5ee1afbe4bf1be9
104 Nd18550080adf4d5d8ed1b32d82b948b2
105 Ne46b5486ca7d49be8216e4ebfd6dbbf5
106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035397129
107 https://doi.org/10.1007/bf00239868
108 schema:sdDatePublished 2022-12-01T06:20
109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
110 schema:sdPublisher N2ebf571e599b429eb45bd9128ba0ad62
111 schema:url https://doi.org/10.1007/bf00239868
112 sgo:license sg:explorer/license/
113 sgo:sdDataset articles
114 rdf:type schema:ScholarlyArticle
115 N2ebf571e599b429eb45bd9128ba0ad62 schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 N3a7031100f6c4b5484587970a87b1a48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Male
119 rdf:type schema:DefinedTerm
120 N436c94c77eca42cc8dd7eb3d475debf8 rdf:first sg:person.01204012306.62
121 rdf:rest rdf:nil
122 N5124c0f0fe0d4de78456c6deb24107e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Running
124 rdf:type schema:DefinedTerm
125 N58ab3642e58b4ebfab26fd0abf52e783 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Respiration
127 rdf:type schema:DefinedTerm
128 N6665377ee36c4c6cb9deed416be53c35 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Lactates
130 rdf:type schema:DefinedTerm
131 N68b83bfd83ed45668f294f81353e698e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Muscle Contraction
133 rdf:type schema:DefinedTerm
134 N6ba4402fb95b40f7a51a8c0bd3c15585 rdf:first sg:person.0703145141.59
135 rdf:rest N436c94c77eca42cc8dd7eb3d475debf8
136 N6e12c52cbbf24844a9d5e481924aa689 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Blood Gas Analysis
138 rdf:type schema:DefinedTerm
139 N80baf921b1064de3b5e8501b9b79931f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Exercise
141 rdf:type schema:DefinedTerm
142 N858dcd76495d4be8a5ee1afbe4bf1be9 schema:name pubmed_id
143 schema:value 7713071
144 rdf:type schema:PropertyValue
145 Nb255be1b2469448d955a3c98a75cfc67 schema:issueNumber 6
146 rdf:type schema:PublicationIssue
147 Nb8a172c5b5e14faaaa704f8f5c02f2b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Muscle, Skeletal
149 rdf:type schema:DefinedTerm
150 Nbb02c2a40e1e4ffc8dd83f527ffa7e03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Adult
152 rdf:type schema:DefinedTerm
153 Nc1f6cca1c7724dc9b320839c12a3fb76 schema:volumeNumber 69
154 rdf:type schema:PublicationVolume
155 Nd18550080adf4d5d8ed1b32d82b948b2 schema:name doi
156 schema:value 10.1007/bf00239868
157 rdf:type schema:PropertyValue
158 Ne18399d2296842cbac5a8b6032932fc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Lactic Acid
160 rdf:type schema:DefinedTerm
161 Ne46b5486ca7d49be8216e4ebfd6dbbf5 schema:name dimensions_id
162 schema:value pub.1035397129
163 rdf:type schema:PropertyValue
164 Ne9d7ad0ae2724094a35d3369e1d82fe8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Humans
166 rdf:type schema:DefinedTerm
167 Nf36ebe04d924402ebd8a6bb04a00d811 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Electromyography
169 rdf:type schema:DefinedTerm
170 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
171 schema:name Medical and Health Sciences
172 rdf:type schema:DefinedTerm
173 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
174 schema:name Clinical Sciences
175 rdf:type schema:DefinedTerm
176 sg:journal.1319730 schema:issn 1432-1025
177 1439-6319
178 schema:name European Journal of Applied Physiology
179 schema:publisher Springer Nature
180 rdf:type schema:Periodical
181 sg:person.01204012306.62 schema:affiliation grid-institutes:grid.1031.3
182 schema:familyName Bronks
183 schema:givenName R.
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204012306.62
185 rdf:type schema:Person
186 sg:person.0703145141.59 schema:affiliation grid-institutes:grid.1031.3
187 schema:familyName Taylor
188 schema:givenName A. D.
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703145141.59
190 rdf:type schema:Person
191 sg:pub.10.1007/bf00357919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046072197
192 https://doi.org/10.1007/bf00357919
193 rdf:type schema:CreativeWork
194 sg:pub.10.1007/bf00421697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011106507
195 https://doi.org/10.1007/bf00421697
196 rdf:type schema:CreativeWork
197 sg:pub.10.1007/bf00422448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038884864
198 https://doi.org/10.1007/bf00422448
199 rdf:type schema:CreativeWork
200 sg:pub.10.1007/bf00424804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001538897
201 https://doi.org/10.1007/bf00424804
202 rdf:type schema:CreativeWork
203 sg:pub.10.1007/bf00690890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052134459
204 https://doi.org/10.1007/bf00690890
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/bf00952241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026508436
207 https://doi.org/10.1007/bf00952241
208 rdf:type schema:CreativeWork
209 grid-institutes:grid.1031.3 schema:alternateName Centre for Human Movement and Sports Management, Southern Cross University, 2480, Lismore, NSW, Australia
210 schema:name Centre for Human Movement and Sports Management, Southern Cross University, 2480, Lismore, NSW, Australia
211 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...