Electromyographic correlates of the transition from aerobic to anaerobic metabolism in treadmill running View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-12

AUTHORS

A. D. Taylor, R. Bronks

ABSTRACT

This study analysed the changes in electromyographic (EMG) activity of the vastus lateralis, biceps femoris and gastrocnemius muscles during incremental treadmill running. The changes in EMG were related to the lactate and ventilatory thresholds. Ten trained subjects participated in the study. Minute ventilation, oxygen consumption, carbon dioxide expired and the fraction of oxygen in the expired gas were recorded continuously. Venous blood samples were collected at each exercise intensity and analysed for lactate concentration. The EMG were recorded at the end of each exercise intensity using surface electrodes. The EMG were quantified through integration (iEMG) and by calculating the mean power frequency (MPF). The iEMG measurements were characterized by a breakpoint in the vastus lateralis and/or gastrocnemius muscles in eight of the subjects tested. However, the results indicated that blood lactate concentrations had already begun to increase in a nonlinear fashion before the iEMG breakpoint had been surpassed. Consequently, the occurence of the lactate threshold cannot be attributed solely to the change in motor unit recruitment or rate coding patterns demonstrated by the iEMG breakpoint. The ventilatory threshold was shown to be a far more reliable and convenient noninvasive predictor of the lactate threshold in comparison with EMG techniques. In conclusion, the EMG measurements used in this study (i.e. iEMG and MPF) were not considered to be viable noninvasive determinants of the aerobic-anaerobic transition phase in treadmill running. More... »

PAGES

508-515

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00239868

DOI

http://dx.doi.org/10.1007/bf00239868

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035397129

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/7713071


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Gas Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electromyography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exercise", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lactates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lactic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscle Contraction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscle, Skeletal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Running", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centre for Human Movement and Sports Management, Southern Cross University, 2480, Lismore, NSW, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1031.3", 
          "name": [
            "Centre for Human Movement and Sports Management, Southern Cross University, 2480, Lismore, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taylor", 
        "givenName": "A. D.", 
        "id": "sg:person.0703145141.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703145141.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Human Movement and Sports Management, Southern Cross University, 2480, Lismore, NSW, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1031.3", 
          "name": [
            "Centre for Human Movement and Sports Management, Southern Cross University, 2480, Lismore, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bronks", 
        "givenName": "R.", 
        "id": "sg:person.01204012306.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204012306.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00690890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052134459", 
          "https://doi.org/10.1007/bf00690890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00421697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011106507", 
          "https://doi.org/10.1007/bf00421697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00422448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038884864", 
          "https://doi.org/10.1007/bf00422448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00424804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001538897", 
          "https://doi.org/10.1007/bf00424804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00357919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046072197", 
          "https://doi.org/10.1007/bf00357919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00952241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026508436", 
          "https://doi.org/10.1007/bf00952241"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-12", 
    "datePublishedReg": "1994-12-01", 
    "description": "This study analysed the changes in electromyographic (EMG) activity of the vastus lateralis, biceps femoris and gastrocnemius muscles during incremental treadmill running. The changes in EMG were related to the lactate and ventilatory thresholds. Ten trained subjects participated in the study. Minute ventilation, oxygen consumption, carbon dioxide expired and the fraction of oxygen in the expired gas were recorded continuously. Venous blood samples were collected at each exercise intensity and analysed for lactate concentration. The EMG were recorded at the end of each exercise intensity using surface electrodes. The EMG were quantified through integration (iEMG) and by calculating the mean power frequency (MPF). The iEMG measurements were characterized by a breakpoint in the vastus lateralis and/or gastrocnemius muscles in eight of the subjects tested. However, the results indicated that blood lactate concentrations had already begun to increase in a nonlinear fashion before the iEMG breakpoint had been surpassed. Consequently, the occurence of the lactate threshold cannot be attributed solely to the change in motor unit recruitment or rate coding patterns demonstrated by the iEMG breakpoint. The ventilatory threshold was shown to be a far more reliable and convenient noninvasive predictor of the lactate threshold in comparison with EMG techniques. In conclusion, the EMG measurements used in this study (i.e. iEMG and MPF) were not considered to be viable noninvasive determinants of the aerobic-anaerobic transition phase in treadmill running.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00239868", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1319730", 
        "issn": [
          "1439-6319", 
          "1432-1025"
        ], 
        "name": "European Journal of Applied Physiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "69"
      }
    ], 
    "keywords": [
      "mean power frequency", 
      "gastrocnemius muscle", 
      "vastus lateralis", 
      "exercise intensity", 
      "treadmill running", 
      "lactate concentration", 
      "lactate threshold", 
      "venous blood samples", 
      "blood lactate concentration", 
      "motor unit recruitment", 
      "noninvasive determinants", 
      "incremental treadmill running", 
      "noninvasive predictor", 
      "minute ventilation", 
      "electromyographic activity", 
      "blood samples", 
      "unit recruitment", 
      "ventilatory threshold", 
      "EMG techniques", 
      "electromyographic correlates", 
      "surface electrodes", 
      "EMG", 
      "oxygen consumption", 
      "EMG measurements", 
      "lateralis", 
      "muscle", 
      "fraction of oxygen", 
      "subjects", 
      "ventilatory", 
      "femoris", 
      "breakpoints", 
      "treadmill", 
      "study", 
      "ventilation", 
      "predictors", 
      "lactate", 
      "power frequency", 
      "metabolism", 
      "changes", 
      "correlates", 
      "conclusion", 
      "threshold", 
      "concentration", 
      "running", 
      "recruitment", 
      "determinants", 
      "activity", 
      "nonlinear fashion", 
      "fashion", 
      "frequency", 
      "patterns", 
      "transition phase", 
      "samples", 
      "intensity", 
      "occurence", 
      "consumption", 
      "fraction", 
      "end", 
      "comparison", 
      "measurements", 
      "results", 
      "technique", 
      "coding pattern", 
      "oxygen", 
      "phase", 
      "carbon dioxide", 
      "integration", 
      "transition", 
      "electrode", 
      "dioxide", 
      "gas"
    ], 
    "name": "Electromyographic correlates of the transition from aerobic to anaerobic metabolism in treadmill running", 
    "pagination": "508-515", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035397129"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00239868"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "7713071"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00239868", 
      "https://app.dimensions.ai/details/publication/pub.1035397129"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_258.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00239868"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00239868'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00239868'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00239868'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00239868'


 

This table displays all metadata directly associated to this object as RDF triples.

211 TRIPLES      21 PREDICATES      115 URIs      101 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00239868 schema:about N0934f8090c4d4e34b633b072524a1afc
2 N2a9320fe16ba4d01acce0c7dca6deba5
3 N52fd198c96b44a4f85a6389c2b622a15
4 N670d29191d1a41dbb08b8ba54e066c38
5 N84cee36af47c4f0a9593251edf0c9980
6 N9387e1b098624bb59e5559c34ac145b5
7 N9d4202a6695b42ecb42e11bcd4a54793
8 Nbbb3d09db3fc49599c716f6e78bb0027
9 Ne962124ba18d493e96effb266549bb5a
10 Neceb5a5ff91e48fa93f6efa97098c12b
11 Nedd6dfe08a0440a3b21fa87033be123a
12 Nee339a205f404e56ad6392c0eac8ef52
13 anzsrc-for:11
14 anzsrc-for:1103
15 schema:author Ned52d330192a40a991d27c517c05c9bb
16 schema:citation sg:pub.10.1007/bf00357919
17 sg:pub.10.1007/bf00421697
18 sg:pub.10.1007/bf00422448
19 sg:pub.10.1007/bf00424804
20 sg:pub.10.1007/bf00690890
21 sg:pub.10.1007/bf00952241
22 schema:datePublished 1994-12
23 schema:datePublishedReg 1994-12-01
24 schema:description This study analysed the changes in electromyographic (EMG) activity of the vastus lateralis, biceps femoris and gastrocnemius muscles during incremental treadmill running. The changes in EMG were related to the lactate and ventilatory thresholds. Ten trained subjects participated in the study. Minute ventilation, oxygen consumption, carbon dioxide expired and the fraction of oxygen in the expired gas were recorded continuously. Venous blood samples were collected at each exercise intensity and analysed for lactate concentration. The EMG were recorded at the end of each exercise intensity using surface electrodes. The EMG were quantified through integration (iEMG) and by calculating the mean power frequency (MPF). The iEMG measurements were characterized by a breakpoint in the vastus lateralis and/or gastrocnemius muscles in eight of the subjects tested. However, the results indicated that blood lactate concentrations had already begun to increase in a nonlinear fashion before the iEMG breakpoint had been surpassed. Consequently, the occurence of the lactate threshold cannot be attributed solely to the change in motor unit recruitment or rate coding patterns demonstrated by the iEMG breakpoint. The ventilatory threshold was shown to be a far more reliable and convenient noninvasive predictor of the lactate threshold in comparison with EMG techniques. In conclusion, the EMG measurements used in this study (i.e. iEMG and MPF) were not considered to be viable noninvasive determinants of the aerobic-anaerobic transition phase in treadmill running.
25 schema:genre article
26 schema:isAccessibleForFree false
27 schema:isPartOf N2210f00d48064459a49c53455a4175c7
28 Na30a4ded787f4cdaa2699194e68cafa7
29 sg:journal.1319730
30 schema:keywords EMG
31 EMG measurements
32 EMG techniques
33 activity
34 blood lactate concentration
35 blood samples
36 breakpoints
37 carbon dioxide
38 changes
39 coding pattern
40 comparison
41 concentration
42 conclusion
43 consumption
44 correlates
45 determinants
46 dioxide
47 electrode
48 electromyographic activity
49 electromyographic correlates
50 end
51 exercise intensity
52 fashion
53 femoris
54 fraction
55 fraction of oxygen
56 frequency
57 gas
58 gastrocnemius muscle
59 incremental treadmill running
60 integration
61 intensity
62 lactate
63 lactate concentration
64 lactate threshold
65 lateralis
66 mean power frequency
67 measurements
68 metabolism
69 minute ventilation
70 motor unit recruitment
71 muscle
72 noninvasive determinants
73 noninvasive predictor
74 nonlinear fashion
75 occurence
76 oxygen
77 oxygen consumption
78 patterns
79 phase
80 power frequency
81 predictors
82 recruitment
83 results
84 running
85 samples
86 study
87 subjects
88 surface electrodes
89 technique
90 threshold
91 transition
92 transition phase
93 treadmill
94 treadmill running
95 unit recruitment
96 vastus lateralis
97 venous blood samples
98 ventilation
99 ventilatory
100 ventilatory threshold
101 schema:name Electromyographic correlates of the transition from aerobic to anaerobic metabolism in treadmill running
102 schema:pagination 508-515
103 schema:productId N006ea67311ad4589b2eb932138346d6f
104 N2e7c7183c5bf4c98b1cf61539902e5e8
105 Nb0f467d0845a4ffea6f1c6b2291f2514
106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035397129
107 https://doi.org/10.1007/bf00239868
108 schema:sdDatePublished 2022-11-24T20:47
109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
110 schema:sdPublisher N24f242c8d5f7416da284bffa3a596087
111 schema:url https://doi.org/10.1007/bf00239868
112 sgo:license sg:explorer/license/
113 sgo:sdDataset articles
114 rdf:type schema:ScholarlyArticle
115 N006ea67311ad4589b2eb932138346d6f schema:name doi
116 schema:value 10.1007/bf00239868
117 rdf:type schema:PropertyValue
118 N0934f8090c4d4e34b633b072524a1afc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Exercise
120 rdf:type schema:DefinedTerm
121 N2210f00d48064459a49c53455a4175c7 schema:issueNumber 6
122 rdf:type schema:PublicationIssue
123 N24f242c8d5f7416da284bffa3a596087 schema:name Springer Nature - SN SciGraph project
124 rdf:type schema:Organization
125 N2a9320fe16ba4d01acce0c7dca6deba5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Lactates
127 rdf:type schema:DefinedTerm
128 N2e7c7183c5bf4c98b1cf61539902e5e8 schema:name dimensions_id
129 schema:value pub.1035397129
130 rdf:type schema:PropertyValue
131 N52fd198c96b44a4f85a6389c2b622a15 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Electromyography
133 rdf:type schema:DefinedTerm
134 N670d29191d1a41dbb08b8ba54e066c38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Adult
136 rdf:type schema:DefinedTerm
137 N84cee36af47c4f0a9593251edf0c9980 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Running
139 rdf:type schema:DefinedTerm
140 N9387e1b098624bb59e5559c34ac145b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Muscle, Skeletal
142 rdf:type schema:DefinedTerm
143 N9d4202a6695b42ecb42e11bcd4a54793 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Humans
145 rdf:type schema:DefinedTerm
146 N9eba9ea2c9274e3099adf96cfe727d55 rdf:first sg:person.01204012306.62
147 rdf:rest rdf:nil
148 Na30a4ded787f4cdaa2699194e68cafa7 schema:volumeNumber 69
149 rdf:type schema:PublicationVolume
150 Nb0f467d0845a4ffea6f1c6b2291f2514 schema:name pubmed_id
151 schema:value 7713071
152 rdf:type schema:PropertyValue
153 Nbbb3d09db3fc49599c716f6e78bb0027 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Blood Gas Analysis
155 rdf:type schema:DefinedTerm
156 Ne962124ba18d493e96effb266549bb5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Lactic Acid
158 rdf:type schema:DefinedTerm
159 Neceb5a5ff91e48fa93f6efa97098c12b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Respiration
161 rdf:type schema:DefinedTerm
162 Ned52d330192a40a991d27c517c05c9bb rdf:first sg:person.0703145141.59
163 rdf:rest N9eba9ea2c9274e3099adf96cfe727d55
164 Nedd6dfe08a0440a3b21fa87033be123a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Male
166 rdf:type schema:DefinedTerm
167 Nee339a205f404e56ad6392c0eac8ef52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Muscle Contraction
169 rdf:type schema:DefinedTerm
170 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
171 schema:name Medical and Health Sciences
172 rdf:type schema:DefinedTerm
173 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
174 schema:name Clinical Sciences
175 rdf:type schema:DefinedTerm
176 sg:journal.1319730 schema:issn 1432-1025
177 1439-6319
178 schema:name European Journal of Applied Physiology
179 schema:publisher Springer Nature
180 rdf:type schema:Periodical
181 sg:person.01204012306.62 schema:affiliation grid-institutes:grid.1031.3
182 schema:familyName Bronks
183 schema:givenName R.
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204012306.62
185 rdf:type schema:Person
186 sg:person.0703145141.59 schema:affiliation grid-institutes:grid.1031.3
187 schema:familyName Taylor
188 schema:givenName A. D.
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703145141.59
190 rdf:type schema:Person
191 sg:pub.10.1007/bf00357919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046072197
192 https://doi.org/10.1007/bf00357919
193 rdf:type schema:CreativeWork
194 sg:pub.10.1007/bf00421697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011106507
195 https://doi.org/10.1007/bf00421697
196 rdf:type schema:CreativeWork
197 sg:pub.10.1007/bf00422448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038884864
198 https://doi.org/10.1007/bf00422448
199 rdf:type schema:CreativeWork
200 sg:pub.10.1007/bf00424804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001538897
201 https://doi.org/10.1007/bf00424804
202 rdf:type schema:CreativeWork
203 sg:pub.10.1007/bf00690890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052134459
204 https://doi.org/10.1007/bf00690890
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/bf00952241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026508436
207 https://doi.org/10.1007/bf00952241
208 rdf:type schema:CreativeWork
209 grid-institutes:grid.1031.3 schema:alternateName Centre for Human Movement and Sports Management, Southern Cross University, 2480, Lismore, NSW, Australia
210 schema:name Centre for Human Movement and Sports Management, Southern Cross University, 2480, Lismore, NSW, Australia
211 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...