Growth of a new fiber projection in the brain of adult rats: Re-innervation of the dentate gyrus by the contralateral ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1974-04

AUTHORS

O. Steward, C. W. Cotman, G. S. Lynch

ABSTRACT

Ablation of the entorhinal cortex of the rat removes the major synaptic input to the granule cells of the ipsilateral dentate gyrus. Following unilateral entorhinal lesions in adult rats, we have examined the efferent projections of the remaining contralateral entorhinal cortex to determine if these might sprout to re-innervate the deafferented dentate gyrus. Autoradiographical tracing of the fiber projections of the remaining contralateral entorhinal cortex 60 days following lesions indicates that new fibers sprout and grow for several hundred microns into the denervated regions, to terminate on portions of the granule cell dendrites which would normally receive ipsilateral entorhinal afferents.These re-innervating fibers form electrophysiologically functional synaptic connections with the denervated dentate granule cells. In the normal animal, unilateral stimulation of the entorhinal cortex does not result in short latency activation of the contralateral dentate gyrus whereas following ipsilateral entorhinal lesions, re-innervation by contralateral entorhinal afferents is reflected electrophysiologically by the appearance of a new short latency evoked potential to contralateral entorhinal stimulation. By field potential analysis, we demonstrate that this new short latency evoked potential is a reflection of mono-synaptic activation of the denervated dentate granule cells by the re-innervating contralateral entorhinal fibers.In addition, the time course of contralateral entorhinal re-innervation is determined electrophysiologically. The new short latency response to contralateral entorhinal stimulation appears as early as 9 days post-lesion, matures functionally between 9 and 15 days, and after 15 days, remains apparently undiminished for as long as 200 days. This implies that the new synapses formed in response to a deafferenting lesion are formed rapidly and remain permanently capable of activating the dentate granule cells which had been deprived of ipsilateral entorhinal input. More... »

PAGES

45-66

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00239017

DOI

http://dx.doi.org/10.1007/bf00239017

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029218215

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/4367724


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Autoradiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dendrites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electric Stimulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evoked Potentials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hippocampus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Limbic System", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nerve Regeneration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Pathways", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurons, Afferent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurons, Efferent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Synapses", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Synaptic Transmission", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Psychobiology, University of California, Irvine, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.266093.8", 
          "name": [
            "Department of Psychobiology, University of California, Irvine, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steward", 
        "givenName": "O.", 
        "id": "sg:person.01310307761.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310307761.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Psychobiology, University of California, Irvine, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.266093.8", 
          "name": [
            "Department of Psychobiology, University of California, Irvine, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cotman", 
        "givenName": "C. W.", 
        "id": "sg:person.0716606642.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716606642.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Psychobiology, University of California, Irvine, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.266093.8", 
          "name": [
            "Department of Psychobiology, University of California, Irvine, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lynch", 
        "givenName": "G. S.", 
        "id": "sg:person.01253056026.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253056026.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00234086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029336785", 
          "https://doi.org/10.1007/bf00234086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/206211b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038132958", 
          "https://doi.org/10.1038/206211b0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00239108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032648519", 
          "https://doi.org/10.1007/bf00239108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/232542a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011689147", 
          "https://doi.org/10.1038/232542a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00234414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016048757", 
          "https://doi.org/10.1007/bf00234414"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1974-04", 
    "datePublishedReg": "1974-04-01", 
    "description": "Ablation of the entorhinal cortex of the rat removes the major synaptic input to the granule cells of the ipsilateral dentate gyrus. Following unilateral entorhinal lesions in adult rats, we have examined the efferent projections of the remaining contralateral entorhinal cortex to determine if these might sprout to re-innervate the deafferented dentate gyrus. Autoradiographical tracing of the fiber projections of the remaining contralateral entorhinal cortex 60 days following lesions indicates that new fibers sprout and grow for several hundred microns into the denervated regions, to terminate on portions of the granule cell dendrites which would normally receive ipsilateral entorhinal afferents.These re-innervating fibers form electrophysiologically functional synaptic connections with the denervated dentate granule cells. In the normal animal, unilateral stimulation of the entorhinal cortex does not result in short latency activation of the contralateral dentate gyrus whereas following ipsilateral entorhinal lesions, re-innervation by contralateral entorhinal afferents is reflected electrophysiologically by the appearance of a new short latency evoked potential to contralateral entorhinal stimulation. By field potential analysis, we demonstrate that this new short latency evoked potential is a reflection of mono-synaptic activation of the denervated dentate granule cells by the re-innervating contralateral entorhinal fibers.In addition, the time course of contralateral entorhinal re-innervation is determined electrophysiologically. The new short latency response to contralateral entorhinal stimulation appears as early as 9 days post-lesion, matures functionally between 9 and 15 days, and after 15 days, remains apparently undiminished for as long as 200 days. This implies that the new synapses formed in response to a deafferenting lesion are formed rapidly and remain permanently capable of activating the dentate granule cells which had been deprived of ipsilateral entorhinal input.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00239017", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1005581", 
        "issn": [
          "0014-4819", 
          "1432-1106"
        ], 
        "name": "Experimental Brain Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "keywords": [
      "dentate granule cells", 
      "denervated dentate granule cells", 
      "ipsilateral entorhinal lesion", 
      "dentate gyrus", 
      "granule cells", 
      "entorhinal lesions", 
      "entorhinal stimulation", 
      "entorhinal afferents", 
      "entorhinal cortex", 
      "adult rats", 
      "fiber projections", 
      "re-innervated fibers", 
      "short latency", 
      "major synaptic input", 
      "deafferented dentate gyrus", 
      "short latency activation", 
      "functional synaptic connections", 
      "short latency responses", 
      "contralateral dentate gyrus", 
      "ipsilateral dentate gyrus", 
      "unilateral entorhinal lesion", 
      "granule cell dendrites", 
      "field potential analysis", 
      "latency activation", 
      "deafferenting lesions", 
      "entorhinal fibers", 
      "denervated regions", 
      "unilateral stimulation", 
      "efferent projections", 
      "cell dendrites", 
      "latency responses", 
      "synaptic inputs", 
      "normal animals", 
      "entorhinal input", 
      "new synapses", 
      "lesions", 
      "synaptic connections", 
      "gyrus", 
      "rats", 
      "stimulation", 
      "afferents", 
      "time course", 
      "cortex", 
      "days", 
      "cells", 
      "activation", 
      "contralateral", 
      "latency", 
      "response", 
      "brain", 
      "synapses", 
      "ablation", 
      "animals", 
      "dendrites", 
      "course", 
      "fibers", 
      "projections", 
      "tracing", 
      "appearance", 
      "potential", 
      "new fibers", 
      "addition", 
      "portion", 
      "microns", 
      "analysis", 
      "growth", 
      "region", 
      "input", 
      "potential analysis", 
      "connection", 
      "reflection", 
      "Autoradiographical tracing", 
      "ipsilateral entorhinal afferents", 
      "contralateral entorhinal afferents", 
      "new short latency", 
      "mono-synaptic activation", 
      "re-innervating contralateral entorhinal fibers", 
      "contralateral entorhinal fibers", 
      "new short latency response", 
      "contralateral entorhinal stimulation", 
      "ipsilateral entorhinal input", 
      "new fiber projection"
    ], 
    "name": "Growth of a new fiber projection in the brain of adult rats: Re-innervation of the dentate gyrus by the contralateral entorhinal cortex following ipsilateral entorhinal lesions", 
    "pagination": "45-66", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029218215"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00239017"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "4367724"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00239017", 
      "https://app.dimensions.ai/details/publication/pub.1029218215"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_133.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00239017"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00239017'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00239017'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00239017'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00239017'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      129 URIs      116 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00239017 schema:about N04ab7d84d1874479beff64a3c5a9d421
2 N4287c2fec12245439284fe9fb0ceb4a2
3 N4fa77d8264314823a1ae38f9f6ccb258
4 N52a3b9d34454461080899748d3367f95
5 N6a1c7e1cff8b4c66a796fb9c33690b4e
6 N70f878e844834b05a40f55364df1be3f
7 N779af027908f4af7b9faee1154569db8
8 N885b4536fe6d4bce8a623cf0816fbdb3
9 N89ac4abb877b43118a864c82d2dbf0fd
10 Nb3507dfc1cd94b9b8f59d0872c5db220
11 Nb3be8497b7394590b9fce1060e980d3f
12 Nb6e188e4ef80454cba91c0e7d423ecd1
13 Nba363fabc64b427c80f39a6f04801b9e
14 Nc14418bd6cf64801a973649b47a82c5a
15 Ne9c064b9af654a0989d0c2cc33c959ce
16 Nff33dc21e423449db693082b2055551a
17 anzsrc-for:11
18 anzsrc-for:1109
19 schema:author N34ca3d0e8dda40248d0b639485aae22a
20 schema:citation sg:pub.10.1007/bf00234086
21 sg:pub.10.1007/bf00234414
22 sg:pub.10.1007/bf00239108
23 sg:pub.10.1038/206211b0
24 sg:pub.10.1038/232542a0
25 schema:datePublished 1974-04
26 schema:datePublishedReg 1974-04-01
27 schema:description Ablation of the entorhinal cortex of the rat removes the major synaptic input to the granule cells of the ipsilateral dentate gyrus. Following unilateral entorhinal lesions in adult rats, we have examined the efferent projections of the remaining contralateral entorhinal cortex to determine if these might sprout to re-innervate the deafferented dentate gyrus. Autoradiographical tracing of the fiber projections of the remaining contralateral entorhinal cortex 60 days following lesions indicates that new fibers sprout and grow for several hundred microns into the denervated regions, to terminate on portions of the granule cell dendrites which would normally receive ipsilateral entorhinal afferents.These re-innervating fibers form electrophysiologically functional synaptic connections with the denervated dentate granule cells. In the normal animal, unilateral stimulation of the entorhinal cortex does not result in short latency activation of the contralateral dentate gyrus whereas following ipsilateral entorhinal lesions, re-innervation by contralateral entorhinal afferents is reflected electrophysiologically by the appearance of a new short latency evoked potential to contralateral entorhinal stimulation. By field potential analysis, we demonstrate that this new short latency evoked potential is a reflection of mono-synaptic activation of the denervated dentate granule cells by the re-innervating contralateral entorhinal fibers.In addition, the time course of contralateral entorhinal re-innervation is determined electrophysiologically. The new short latency response to contralateral entorhinal stimulation appears as early as 9 days post-lesion, matures functionally between 9 and 15 days, and after 15 days, remains apparently undiminished for as long as 200 days. This implies that the new synapses formed in response to a deafferenting lesion are formed rapidly and remain permanently capable of activating the dentate granule cells which had been deprived of ipsilateral entorhinal input.
28 schema:genre article
29 schema:isAccessibleForFree false
30 schema:isPartOf N21db42ab788d49da8ddedcc867d8076f
31 Nf16b4ff2eac144c39839fe390c76f987
32 sg:journal.1005581
33 schema:keywords Autoradiographical tracing
34 ablation
35 activation
36 addition
37 adult rats
38 afferents
39 analysis
40 animals
41 appearance
42 brain
43 cell dendrites
44 cells
45 connection
46 contralateral
47 contralateral dentate gyrus
48 contralateral entorhinal afferents
49 contralateral entorhinal fibers
50 contralateral entorhinal stimulation
51 cortex
52 course
53 days
54 deafferented dentate gyrus
55 deafferenting lesions
56 dendrites
57 denervated dentate granule cells
58 denervated regions
59 dentate granule cells
60 dentate gyrus
61 efferent projections
62 entorhinal afferents
63 entorhinal cortex
64 entorhinal fibers
65 entorhinal input
66 entorhinal lesions
67 entorhinal stimulation
68 fiber projections
69 fibers
70 field potential analysis
71 functional synaptic connections
72 granule cell dendrites
73 granule cells
74 growth
75 gyrus
76 input
77 ipsilateral dentate gyrus
78 ipsilateral entorhinal afferents
79 ipsilateral entorhinal input
80 ipsilateral entorhinal lesion
81 latency
82 latency activation
83 latency responses
84 lesions
85 major synaptic input
86 microns
87 mono-synaptic activation
88 new fiber projection
89 new fibers
90 new short latency
91 new short latency response
92 new synapses
93 normal animals
94 portion
95 potential
96 potential analysis
97 projections
98 rats
99 re-innervated fibers
100 re-innervating contralateral entorhinal fibers
101 reflection
102 region
103 response
104 short latency
105 short latency activation
106 short latency responses
107 stimulation
108 synapses
109 synaptic connections
110 synaptic inputs
111 time course
112 tracing
113 unilateral entorhinal lesion
114 unilateral stimulation
115 schema:name Growth of a new fiber projection in the brain of adult rats: Re-innervation of the dentate gyrus by the contralateral entorhinal cortex following ipsilateral entorhinal lesions
116 schema:pagination 45-66
117 schema:productId N61549eb69ed64adaa31ddbe351f41248
118 N99af7c1894eb4d78895f115b3c895739
119 Nd3c8b11623564511a55d0b3394a3eae2
120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029218215
121 https://doi.org/10.1007/bf00239017
122 schema:sdDatePublished 2022-01-01T18:01
123 schema:sdLicense https://scigraph.springernature.com/explorer/license/
124 schema:sdPublisher N0482d76f09de4bd3b97247f060c9997e
125 schema:url https://doi.org/10.1007/bf00239017
126 sgo:license sg:explorer/license/
127 sgo:sdDataset articles
128 rdf:type schema:ScholarlyArticle
129 N0482d76f09de4bd3b97247f060c9997e schema:name Springer Nature - SN SciGraph project
130 rdf:type schema:Organization
131 N04ab7d84d1874479beff64a3c5a9d421 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Rats
133 rdf:type schema:DefinedTerm
134 N21db42ab788d49da8ddedcc867d8076f schema:issueNumber 1
135 rdf:type schema:PublicationIssue
136 N34ca3d0e8dda40248d0b639485aae22a rdf:first sg:person.01310307761.55
137 rdf:rest N6d97949c39a846cab36a93f00fcbba90
138 N3d88aa53380d450787b2f508153e9ba0 rdf:first sg:person.01253056026.76
139 rdf:rest rdf:nil
140 N4287c2fec12245439284fe9fb0ceb4a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Limbic System
142 rdf:type schema:DefinedTerm
143 N4fa77d8264314823a1ae38f9f6ccb258 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Male
145 rdf:type schema:DefinedTerm
146 N52a3b9d34454461080899748d3367f95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Nerve Regeneration
148 rdf:type schema:DefinedTerm
149 N61549eb69ed64adaa31ddbe351f41248 schema:name doi
150 schema:value 10.1007/bf00239017
151 rdf:type schema:PropertyValue
152 N6a1c7e1cff8b4c66a796fb9c33690b4e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Synapses
154 rdf:type schema:DefinedTerm
155 N6d97949c39a846cab36a93f00fcbba90 rdf:first sg:person.0716606642.72
156 rdf:rest N3d88aa53380d450787b2f508153e9ba0
157 N70f878e844834b05a40f55364df1be3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Neurons, Afferent
159 rdf:type schema:DefinedTerm
160 N779af027908f4af7b9faee1154569db8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Dendrites
162 rdf:type schema:DefinedTerm
163 N885b4536fe6d4bce8a623cf0816fbdb3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Synaptic Transmission
165 rdf:type schema:DefinedTerm
166 N89ac4abb877b43118a864c82d2dbf0fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Electric Stimulation
168 rdf:type schema:DefinedTerm
169 N99af7c1894eb4d78895f115b3c895739 schema:name dimensions_id
170 schema:value pub.1029218215
171 rdf:type schema:PropertyValue
172 Nb3507dfc1cd94b9b8f59d0872c5db220 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Neural Pathways
174 rdf:type schema:DefinedTerm
175 Nb3be8497b7394590b9fce1060e980d3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Autoradiography
177 rdf:type schema:DefinedTerm
178 Nb6e188e4ef80454cba91c0e7d423ecd1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Hippocampus
180 rdf:type schema:DefinedTerm
181 Nba363fabc64b427c80f39a6f04801b9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Time Factors
183 rdf:type schema:DefinedTerm
184 Nc14418bd6cf64801a973649b47a82c5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Neurons, Efferent
186 rdf:type schema:DefinedTerm
187 Nd3c8b11623564511a55d0b3394a3eae2 schema:name pubmed_id
188 schema:value 4367724
189 rdf:type schema:PropertyValue
190 Ne9c064b9af654a0989d0c2cc33c959ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Animals
192 rdf:type schema:DefinedTerm
193 Nf16b4ff2eac144c39839fe390c76f987 schema:volumeNumber 20
194 rdf:type schema:PublicationVolume
195 Nff33dc21e423449db693082b2055551a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Evoked Potentials
197 rdf:type schema:DefinedTerm
198 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
199 schema:name Medical and Health Sciences
200 rdf:type schema:DefinedTerm
201 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
202 schema:name Neurosciences
203 rdf:type schema:DefinedTerm
204 sg:journal.1005581 schema:issn 0014-4819
205 1432-1106
206 schema:name Experimental Brain Research
207 schema:publisher Springer Nature
208 rdf:type schema:Periodical
209 sg:person.01253056026.76 schema:affiliation grid-institutes:grid.266093.8
210 schema:familyName Lynch
211 schema:givenName G. S.
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253056026.76
213 rdf:type schema:Person
214 sg:person.01310307761.55 schema:affiliation grid-institutes:grid.266093.8
215 schema:familyName Steward
216 schema:givenName O.
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310307761.55
218 rdf:type schema:Person
219 sg:person.0716606642.72 schema:affiliation grid-institutes:grid.266093.8
220 schema:familyName Cotman
221 schema:givenName C. W.
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716606642.72
223 rdf:type schema:Person
224 sg:pub.10.1007/bf00234086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029336785
225 https://doi.org/10.1007/bf00234086
226 rdf:type schema:CreativeWork
227 sg:pub.10.1007/bf00234414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016048757
228 https://doi.org/10.1007/bf00234414
229 rdf:type schema:CreativeWork
230 sg:pub.10.1007/bf00239108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032648519
231 https://doi.org/10.1007/bf00239108
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/206211b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038132958
234 https://doi.org/10.1038/206211b0
235 rdf:type schema:CreativeWork
236 sg:pub.10.1038/232542a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011689147
237 https://doi.org/10.1038/232542a0
238 rdf:type schema:CreativeWork
239 grid-institutes:grid.266093.8 schema:alternateName Department of Psychobiology, University of California, Irvine, California, USA
240 schema:name Department of Psychobiology, University of California, Irvine, California, USA
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...