Organization of the hippocampal output View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1973-04

AUTHORS

P. Andersen, B. H. Bland, J. D. Dudar

ABSTRACT

The spatial organization of the efferent projections of CA1 and CA3 hippocampal pyramids has been studied using recordings of fibre volleys, orthodromic and antidromic population spikes and synaptic field potentials, following microelectrode stimulation of the fimbria, CA1 alveus, or subiculum.Only CA3 pyramidal cells were found to send their axons into the fimbria. In the septal two thirds of the hippocampus the CA1 pyramidal cells project in a caudal direction to the pyramidal part of the subiculum. The temporal third was not explored for technical reasons.Fimbrial fibres are arranged in a strictly parallel fashion, the rostro-medial CA3 cells distributing their axons near to the hippocampus, while those located at the temporal extreme distribute their axons to the outer edge of the fimbria. The organization of the Schaffer collaterals and the projections of the CA1 cells consisted of parallel lamellae, oriented nearly transversely to the longitudinal axis of the hippocampus in rabbits (more obliquely in cats). The findings indicate that CA3 cell discharge via the Schaffer collaterals represents a major input driving the CA1 cells.The dichotomy with regard to hippocampal output suggests that the CA3 and CA1 regions of the hippocampus may subserve different functions, thus probably participating differentially in various behavioural situations.This organization makes it possible to study the behaviour of animals with selective and regional de-efferentation of the CA3 or of the CA1 regions by making discrete lesions in the fimbria and alveus, respectively. Alternatively, recording the fibre volley from the fimbria may provide a useful monitor of the output of the CA3 region during different behaviours. The spatial organization of the efferent projections of CA1 and CA3 hippocampal pyramids has been studied using recordings of fibre volleys, orthodromic and antidromic population spikes and synaptic field potentials, following microelectrode stimulation of the fimbria, CA1 alveus, or subiculum. Only CA3 pyramidal cells were found to send their axons into the fimbria. In the septal two thirds of the hippocampus the CA1 pyramidal cells project in a caudal direction to the pyramidal part of the subiculum. The temporal third was not explored for technical reasons. Fimbrial fibres are arranged in a strictly parallel fashion, the rostro-medial CA3 cells distributing their axons near to the hippocampus, while those located at the temporal extreme distribute their axons to the outer edge of the fimbria. The organization of the Schaffer collaterals and the projections of the CA1 cells consisted of parallel lamellae, oriented nearly transversely to the longitudinal axis of the hippocampus in rabbits (more obliquely in cats). The findings indicate that CA3 cell discharge via the Schaffer collaterals represents a major input driving the CA1 cells. The dichotomy with regard to hippocampal output suggests that the CA3 and CA1 regions of the hippocampus may subserve different functions, thus probably participating differentially in various behavioural situations. This organization makes it possible to study the behaviour of animals with selective and regional de-efferentation of the CA3 or of the CA1 regions by making discrete lesions in the fimbria and alveus, respectively. Alternatively, recording the fibre volley from the fimbria may provide a useful monitor of the output of the CA3 region during different behaviours. More... »

PAGES

152-168

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00235025

DOI

http://dx.doi.org/10.1007/bf00235025

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038322696

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/4714522


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Action Potentials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Axons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cerebral Cortex", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hippocampus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microelectrodes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Micromanipulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Pathways", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rabbits", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Synapses", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Oslo", 
          "id": "https://www.grid.ac/institutes/grid.5510.1", 
          "name": [
            "The Institute of Neurophysiology, University of Oslo, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andersen", 
        "givenName": "P.", 
        "id": "sg:person.01356024554.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356024554.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oslo", 
          "id": "https://www.grid.ac/institutes/grid.5510.1", 
          "name": [
            "The Institute of Neurophysiology, University of Oslo, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bland", 
        "givenName": "B. H.", 
        "id": "sg:person.0713640136.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713640136.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oslo", 
          "id": "https://www.grid.ac/institutes/grid.5510.1", 
          "name": [
            "The Institute of Neurophysiology, University of Oslo, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dudar", 
        "givenName": "J. D.", 
        "id": "sg:person.0107336464.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0107336464.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/cne.901140306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001103447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000125433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004084395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cne.901040205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006664962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(67)90044-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007390598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(67)90044-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007390598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0079-6123(08)63102-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007603757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00234087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008706939", 
          "https://doi.org/10.1007/bf00234087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00234087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008706939", 
          "https://doi.org/10.1007/bf00234087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1962.sp006874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011356409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(67)90119-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013457498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(67)90119-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013457498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cne.901470202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015975140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(69)90092-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026007419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(69)90092-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026007419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00234086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029336785", 
          "https://doi.org/10.1007/bf00234086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00234086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029336785", 
          "https://doi.org/10.1007/bf00234086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(66)90057-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030751523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(66)90057-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030751523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1748-1716.1966.tb03224.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031408906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1748-1716.1966.tb03224.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031408906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1748-1716.1958.tb01544.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033309328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0032534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035862149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(63)90060-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043929202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(63)90060-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043929202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00236716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046398321", 
          "https://doi.org/10.1007/bf00236716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00236716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046398321", 
          "https://doi.org/10.1007/bf00236716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(59)90040-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051768724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(59)90040-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051768724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1748-1716.1960.tb01856.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052062793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cne.901120120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053092845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/89.1.83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059443844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/89.2.317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059443853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.125.3247.549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062469502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1954.17.4.345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075518466"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1973-04", 
    "datePublishedReg": "1973-04-01", 
    "description": "The spatial organization of the efferent projections of CA1 and CA3 hippocampal pyramids has been studied using recordings of fibre volleys, orthodromic and antidromic population spikes and synaptic field potentials, following microelectrode stimulation of the fimbria, CA1 alveus, or subiculum.Only CA3 pyramidal cells were found to send their axons into the fimbria. In the septal two thirds of the hippocampus the CA1 pyramidal cells project in a caudal direction to the pyramidal part of the subiculum. The temporal third was not explored for technical reasons.Fimbrial fibres are arranged in a strictly parallel fashion, the rostro-medial CA3 cells distributing their axons near to the hippocampus, while those located at the temporal extreme distribute their axons to the outer edge of the fimbria. The organization of the Schaffer collaterals and the projections of the CA1 cells consisted of parallel lamellae, oriented nearly transversely to the longitudinal axis of the hippocampus in rabbits (more obliquely in cats). The findings indicate that CA3 cell discharge via the Schaffer collaterals represents a major input driving the CA1 cells.The dichotomy with regard to hippocampal output suggests that the CA3 and CA1 regions of the hippocampus may subserve different functions, thus probably participating differentially in various behavioural situations.This organization makes it possible to study the behaviour of animals with selective and regional de-efferentation of the CA3 or of the CA1 regions by making discrete lesions in the fimbria and alveus, respectively. Alternatively, recording the fibre volley from the fimbria may provide a useful monitor of the output of the CA3 region during different behaviours. The spatial organization of the efferent projections of CA1 and CA3 hippocampal pyramids has been studied using recordings of fibre volleys, orthodromic and antidromic population spikes and synaptic field potentials, following microelectrode stimulation of the fimbria, CA1 alveus, or subiculum. Only CA3 pyramidal cells were found to send their axons into the fimbria. In the septal two thirds of the hippocampus the CA1 pyramidal cells project in a caudal direction to the pyramidal part of the subiculum. The temporal third was not explored for technical reasons. Fimbrial fibres are arranged in a strictly parallel fashion, the rostro-medial CA3 cells distributing their axons near to the hippocampus, while those located at the temporal extreme distribute their axons to the outer edge of the fimbria. The organization of the Schaffer collaterals and the projections of the CA1 cells consisted of parallel lamellae, oriented nearly transversely to the longitudinal axis of the hippocampus in rabbits (more obliquely in cats). The findings indicate that CA3 cell discharge via the Schaffer collaterals represents a major input driving the CA1 cells. The dichotomy with regard to hippocampal output suggests that the CA3 and CA1 regions of the hippocampus may subserve different functions, thus probably participating differentially in various behavioural situations. This organization makes it possible to study the behaviour of animals with selective and regional de-efferentation of the CA3 or of the CA1 regions by making discrete lesions in the fimbria and alveus, respectively. Alternatively, recording the fibre volley from the fimbria may provide a useful monitor of the output of the CA3 region during different behaviours.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00235025", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1005581", 
        "issn": [
          "0014-4819", 
          "1432-1106"
        ], 
        "name": "Experimental Brain Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Organization of the hippocampal output", 
    "pagination": "152-168", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b68e17c18c0fd4b25ab5d5c86ccd7ec3db5634c14d25616e197c9234f767a9b3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "4714522"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0043312"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00235025"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038322696"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00235025", 
      "https://app.dimensions.ai/details/publication/pub.1038322696"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130794_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF00235025"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00235025'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00235025'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00235025'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00235025'


 

This table displays all metadata directly associated to this object as RDF triples.

206 TRIPLES      21 PREDICATES      65 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00235025 schema:about N09d7d010b048426cad77a5f39f9edd97
2 N0bdb827211094a7bba3a48b399006ff8
3 N0e9fa30b4bf9424b85afe3a919eb3130
4 N20643047b95a44c69ad96640b34fbd08
5 N28ccdc75e3ed483c9f4efc7cff20dfc2
6 N329303cf7ca54df69666907d2c77883d
7 N59141d8a27c54e31987f23380db41496
8 N6a842210fa924377bce8570dbaadc2cc
9 N945e30bdff2b42198ab2d75f24b80365
10 Nbc1b71d503b244b394a5ff8ce65c1c47
11 Nca0eb36dd96c4a0fb3085de693037b84
12 Ne5d2f4490d8442d39cba38c2a36474cb
13 anzsrc-for:11
14 anzsrc-for:1109
15 schema:author Na9715d6801024c49a769d550f684979d
16 schema:citation sg:pub.10.1007/bf00234086
17 sg:pub.10.1007/bf00234087
18 sg:pub.10.1007/bf00236716
19 https://doi.org/10.1002/cne.901040205
20 https://doi.org/10.1002/cne.901120120
21 https://doi.org/10.1002/cne.901140306
22 https://doi.org/10.1002/cne.901470202
23 https://doi.org/10.1016/0013-4694(59)90040-9
24 https://doi.org/10.1016/0013-4694(63)90060-9
25 https://doi.org/10.1016/0013-4694(66)90057-5
26 https://doi.org/10.1016/0013-4694(67)90044-2
27 https://doi.org/10.1016/0013-4694(67)90119-8
28 https://doi.org/10.1016/0013-4694(69)90092-3
29 https://doi.org/10.1016/s0079-6123(08)63102-7
30 https://doi.org/10.1037/h0032534
31 https://doi.org/10.1093/brain/89.1.83
32 https://doi.org/10.1093/brain/89.2.317
33 https://doi.org/10.1111/j.1748-1716.1958.tb01544.x
34 https://doi.org/10.1111/j.1748-1716.1960.tb01856.x
35 https://doi.org/10.1111/j.1748-1716.1966.tb03224.x
36 https://doi.org/10.1113/jphysiol.1962.sp006874
37 https://doi.org/10.1126/science.125.3247.549
38 https://doi.org/10.1152/jn.1954.17.4.345
39 https://doi.org/10.1159/000125433
40 schema:datePublished 1973-04
41 schema:datePublishedReg 1973-04-01
42 schema:description The spatial organization of the efferent projections of CA1 and CA3 hippocampal pyramids has been studied using recordings of fibre volleys, orthodromic and antidromic population spikes and synaptic field potentials, following microelectrode stimulation of the fimbria, CA1 alveus, or subiculum.Only CA3 pyramidal cells were found to send their axons into the fimbria. In the septal two thirds of the hippocampus the CA1 pyramidal cells project in a caudal direction to the pyramidal part of the subiculum. The temporal third was not explored for technical reasons.Fimbrial fibres are arranged in a strictly parallel fashion, the rostro-medial CA3 cells distributing their axons near to the hippocampus, while those located at the temporal extreme distribute their axons to the outer edge of the fimbria. The organization of the Schaffer collaterals and the projections of the CA1 cells consisted of parallel lamellae, oriented nearly transversely to the longitudinal axis of the hippocampus in rabbits (more obliquely in cats). The findings indicate that CA3 cell discharge via the Schaffer collaterals represents a major input driving the CA1 cells.The dichotomy with regard to hippocampal output suggests that the CA3 and CA1 regions of the hippocampus may subserve different functions, thus probably participating differentially in various behavioural situations.This organization makes it possible to study the behaviour of animals with selective and regional de-efferentation of the CA3 or of the CA1 regions by making discrete lesions in the fimbria and alveus, respectively. Alternatively, recording the fibre volley from the fimbria may provide a useful monitor of the output of the CA3 region during different behaviours. The spatial organization of the efferent projections of CA1 and CA3 hippocampal pyramids has been studied using recordings of fibre volleys, orthodromic and antidromic population spikes and synaptic field potentials, following microelectrode stimulation of the fimbria, CA1 alveus, or subiculum. Only CA3 pyramidal cells were found to send their axons into the fimbria. In the septal two thirds of the hippocampus the CA1 pyramidal cells project in a caudal direction to the pyramidal part of the subiculum. The temporal third was not explored for technical reasons. Fimbrial fibres are arranged in a strictly parallel fashion, the rostro-medial CA3 cells distributing their axons near to the hippocampus, while those located at the temporal extreme distribute their axons to the outer edge of the fimbria. The organization of the Schaffer collaterals and the projections of the CA1 cells consisted of parallel lamellae, oriented nearly transversely to the longitudinal axis of the hippocampus in rabbits (more obliquely in cats). The findings indicate that CA3 cell discharge via the Schaffer collaterals represents a major input driving the CA1 cells. The dichotomy with regard to hippocampal output suggests that the CA3 and CA1 regions of the hippocampus may subserve different functions, thus probably participating differentially in various behavioural situations. This organization makes it possible to study the behaviour of animals with selective and regional de-efferentation of the CA3 or of the CA1 regions by making discrete lesions in the fimbria and alveus, respectively. Alternatively, recording the fibre volley from the fimbria may provide a useful monitor of the output of the CA3 region during different behaviours.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf N14b1036da118409d90e1c7699629c5d8
47 N34cb3fa3343544f2b469a9f39564db5a
48 sg:journal.1005581
49 schema:name Organization of the hippocampal output
50 schema:pagination 152-168
51 schema:productId N2e91d8354d9348e080a7a6b65fe5a7cd
52 N3d578d85d0494770a6c5174b42693392
53 N59714cd21ac543529c988557371afe25
54 Ndc783eba07a742ee97fe393dabf96e77
55 Ne0bb8498a3a44ee4bcbcc5c6edbbd71a
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038322696
57 https://doi.org/10.1007/bf00235025
58 schema:sdDatePublished 2019-04-11T13:49
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N418218de929243b5b9ca61f72163096e
61 schema:url http://link.springer.com/10.1007%2FBF00235025
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N09d7d010b048426cad77a5f39f9edd97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Microelectrodes
67 rdf:type schema:DefinedTerm
68 N0bdb827211094a7bba3a48b399006ff8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Cerebral Cortex
70 rdf:type schema:DefinedTerm
71 N0e9fa30b4bf9424b85afe3a919eb3130 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Synapses
73 rdf:type schema:DefinedTerm
74 N14b1036da118409d90e1c7699629c5d8 schema:issueNumber 2
75 rdf:type schema:PublicationIssue
76 N20643047b95a44c69ad96640b34fbd08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Hippocampus
78 rdf:type schema:DefinedTerm
79 N28ccdc75e3ed483c9f4efc7cff20dfc2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Cats
81 rdf:type schema:DefinedTerm
82 N2e91d8354d9348e080a7a6b65fe5a7cd schema:name doi
83 schema:value 10.1007/bf00235025
84 rdf:type schema:PropertyValue
85 N329303cf7ca54df69666907d2c77883d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Micromanipulation
87 rdf:type schema:DefinedTerm
88 N34cb3fa3343544f2b469a9f39564db5a schema:volumeNumber 17
89 rdf:type schema:PublicationVolume
90 N3d578d85d0494770a6c5174b42693392 schema:name nlm_unique_id
91 schema:value 0043312
92 rdf:type schema:PropertyValue
93 N418218de929243b5b9ca61f72163096e schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N59141d8a27c54e31987f23380db41496 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Rabbits
97 rdf:type schema:DefinedTerm
98 N59714cd21ac543529c988557371afe25 schema:name pubmed_id
99 schema:value 4714522
100 rdf:type schema:PropertyValue
101 N6a842210fa924377bce8570dbaadc2cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Action Potentials
103 rdf:type schema:DefinedTerm
104 N945e30bdff2b42198ab2d75f24b80365 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Neural Pathways
106 rdf:type schema:DefinedTerm
107 N9cfb61efd56b46ae814e1f7aedd53629 rdf:first sg:person.0713640136.73
108 rdf:rest Nc17fddd84a31499b8b4bf507d5ee88b4
109 Na9715d6801024c49a769d550f684979d rdf:first sg:person.01356024554.61
110 rdf:rest N9cfb61efd56b46ae814e1f7aedd53629
111 Nbc1b71d503b244b394a5ff8ce65c1c47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Axons
113 rdf:type schema:DefinedTerm
114 Nc17fddd84a31499b8b4bf507d5ee88b4 rdf:first sg:person.0107336464.32
115 rdf:rest rdf:nil
116 Nca0eb36dd96c4a0fb3085de693037b84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Brain Mapping
118 rdf:type schema:DefinedTerm
119 Ndc783eba07a742ee97fe393dabf96e77 schema:name dimensions_id
120 schema:value pub.1038322696
121 rdf:type schema:PropertyValue
122 Ne0bb8498a3a44ee4bcbcc5c6edbbd71a schema:name readcube_id
123 schema:value b68e17c18c0fd4b25ab5d5c86ccd7ec3db5634c14d25616e197c9234f767a9b3
124 rdf:type schema:PropertyValue
125 Ne5d2f4490d8442d39cba38c2a36474cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Animals
127 rdf:type schema:DefinedTerm
128 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
129 schema:name Medical and Health Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
132 schema:name Neurosciences
133 rdf:type schema:DefinedTerm
134 sg:journal.1005581 schema:issn 0014-4819
135 1432-1106
136 schema:name Experimental Brain Research
137 rdf:type schema:Periodical
138 sg:person.0107336464.32 schema:affiliation https://www.grid.ac/institutes/grid.5510.1
139 schema:familyName Dudar
140 schema:givenName J. D.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0107336464.32
142 rdf:type schema:Person
143 sg:person.01356024554.61 schema:affiliation https://www.grid.ac/institutes/grid.5510.1
144 schema:familyName Andersen
145 schema:givenName P.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356024554.61
147 rdf:type schema:Person
148 sg:person.0713640136.73 schema:affiliation https://www.grid.ac/institutes/grid.5510.1
149 schema:familyName Bland
150 schema:givenName B. H.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713640136.73
152 rdf:type schema:Person
153 sg:pub.10.1007/bf00234086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029336785
154 https://doi.org/10.1007/bf00234086
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/bf00234087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008706939
157 https://doi.org/10.1007/bf00234087
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/bf00236716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046398321
160 https://doi.org/10.1007/bf00236716
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/cne.901040205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006664962
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/cne.901120120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053092845
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/cne.901140306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001103447
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/cne.901470202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015975140
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/0013-4694(59)90040-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051768724
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/0013-4694(63)90060-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043929202
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/0013-4694(66)90057-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030751523
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/0013-4694(67)90044-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007390598
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/0013-4694(67)90119-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013457498
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/0013-4694(69)90092-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026007419
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/s0079-6123(08)63102-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007603757
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1037/h0032534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035862149
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1093/brain/89.1.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059443844
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1093/brain/89.2.317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059443853
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1111/j.1748-1716.1958.tb01544.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033309328
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1111/j.1748-1716.1960.tb01856.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052062793
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1111/j.1748-1716.1966.tb03224.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031408906
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1113/jphysiol.1962.sp006874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011356409
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1126/science.125.3247.549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062469502
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1152/jn.1954.17.4.345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075518466
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1159/000125433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004084395
203 rdf:type schema:CreativeWork
204 https://www.grid.ac/institutes/grid.5510.1 schema:alternateName University of Oslo
205 schema:name The Institute of Neurophysiology, University of Oslo, Norway
206 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...