Histology of, and physical factors affecting, transient GUS expression in pearl millet (Pennisetum glaucum (L.) R. Br.) embryos following microprojectile ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-06

AUTHORS

Mark G. Taylor, Indra K. Vasil

ABSTRACT

Transient GUS (β-glucuronidase) expression was visualized in whole and sectioned embryos of Pennisetum glaucum (L.) R. Br. (pearl millet) after microprojectile bombardment with pMON 8678 DNA. Strongest GUS expression occurred in cells located in the center of GUS positive spots with decreasing intensity in surrounding cells. GUS positive cells could be seen up to 12 cell layers beneath the epidermis. Needle-like crystals of the GUS assay product were found throughout the cytoplasm of GUS positive cells. The number of GUS positive spots was correlated to the microprojectile spread pattern on the medium surface. Shorter bombardment distances (6.6 and 9.8 cm) and the standard accelerator speed gave the best results for transient expression but also caused maximum tissue damage. The speed and distance, however, had little influence on the ability of bombarded embryos to form compact callus. The developmental stage of the bombarded immature embryos was the determining factor in the formation of compact callus, from which plants were regenerated. More... »

PAGES

120-125

Journal

TITLE

Plant Cell Reports

ISSUE

3

VOLUME

10

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00232041

DOI

http://dx.doi.org/10.1007/bf00232041

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034076592

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24221489


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Laboratory of Plant Cell and Molecular Biology, Department of Vegetable Crops, University of Florida, 32611, Gainesville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taylor", 
        "givenName": "Mark G.", 
        "id": "sg:person.01062376070.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062376070.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Laboratory of Plant Cell and Molecular Biology, Department of Vegetable Crops, University of Florida, 32611, Gainesville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasil", 
        "givenName": "Indra K.", 
        "id": "sg:person.011541453415.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011541453415.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00039024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007714524", 
          "https://doi.org/10.1007/bf00039024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00039024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007714524", 
          "https://doi.org/10.1007/bf00039024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.92.2.334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014805831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0990-833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025361066", 
          "https://doi.org/10.1038/nbt0990-833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.85.12.4305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031979710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00272733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036202123", 
          "https://doi.org/10.1007/bf00272733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00272733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036202123", 
          "https://doi.org/10.1007/bf00272733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/338274a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040743981", 
          "https://doi.org/10.1038/338274a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/338274a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040743981", 
          "https://doi.org/10.1038/338274a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00269041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041737222", 
          "https://doi.org/10.1007/bf00269041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00269041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041737222", 
          "https://doi.org/10.1007/bf00269041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/319791a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045509134", 
          "https://doi.org/10.1038/319791a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0065-2660(08)60014-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053410207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/41.9.1161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059857201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2832947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062564675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3869124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070467195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aob.a086064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083601327"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1991-06", 
    "datePublishedReg": "1991-06-01", 
    "description": "Transient GUS (\u03b2-glucuronidase) expression was visualized in whole and sectioned embryos of Pennisetum glaucum (L.) R. Br. (pearl millet) after microprojectile bombardment with pMON 8678 DNA. Strongest GUS expression occurred in cells located in the center of GUS positive spots with decreasing intensity in surrounding cells. GUS positive cells could be seen up to 12 cell layers beneath the epidermis. Needle-like crystals of the GUS assay product were found throughout the cytoplasm of GUS positive cells. The number of GUS positive spots was correlated to the microprojectile spread pattern on the medium surface. Shorter bombardment distances (6.6 and 9.8 cm) and the standard accelerator speed gave the best results for transient expression but also caused maximum tissue damage. The speed and distance, however, had little influence on the ability of bombarded embryos to form compact callus. The developmental stage of the bombarded immature embryos was the determining factor in the formation of compact callus, from which plants were regenerated. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00232041", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1124809", 
        "issn": [
          "0721-7714", 
          "1432-203X"
        ], 
        "name": "Plant Cell Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Histology of, and physical factors affecting, transient GUS expression in pearl millet (Pennisetum glaucum (L.) R. Br.) embryos following microprojectile bombardment", 
    "pagination": "120-125", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00232041"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a25515c32cd668b0db9657c6e2538a20dd63cb64bec72e7f3630307273780fd7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034076592"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9880970"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24221489"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00232041", 
      "https://app.dimensions.ai/details/publication/pub.1034076592"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91432_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00232041"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00232041'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00232041'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00232041'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00232041'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      21 PREDICATES      42 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00232041 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N9de0a77dd6de48c9b0a8a8ddf56dcce7
4 schema:citation sg:pub.10.1007/bf00039024
5 sg:pub.10.1007/bf00269041
6 sg:pub.10.1007/bf00272733
7 sg:pub.10.1038/319791a0
8 sg:pub.10.1038/338274a0
9 sg:pub.10.1038/nbt0990-833
10 https://doi.org/10.1016/s0065-2660(08)60014-0
11 https://doi.org/10.1073/pnas.85.12.4305
12 https://doi.org/10.1093/jxb/41.9.1161
13 https://doi.org/10.1093/oxfordjournals.aob.a086064
14 https://doi.org/10.1104/pp.92.2.334
15 https://doi.org/10.1126/science.2832947
16 https://doi.org/10.2307/3869124
17 schema:datePublished 1991-06
18 schema:datePublishedReg 1991-06-01
19 schema:description Transient GUS (β-glucuronidase) expression was visualized in whole and sectioned embryos of Pennisetum glaucum (L.) R. Br. (pearl millet) after microprojectile bombardment with pMON 8678 DNA. Strongest GUS expression occurred in cells located in the center of GUS positive spots with decreasing intensity in surrounding cells. GUS positive cells could be seen up to 12 cell layers beneath the epidermis. Needle-like crystals of the GUS assay product were found throughout the cytoplasm of GUS positive cells. The number of GUS positive spots was correlated to the microprojectile spread pattern on the medium surface. Shorter bombardment distances (6.6 and 9.8 cm) and the standard accelerator speed gave the best results for transient expression but also caused maximum tissue damage. The speed and distance, however, had little influence on the ability of bombarded embryos to form compact callus. The developmental stage of the bombarded immature embryos was the determining factor in the formation of compact callus, from which plants were regenerated.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N506039af6dff4584b6c3c20cbac978c1
24 Na94cf67e8b9044a2bcf47e291af676dc
25 sg:journal.1124809
26 schema:name Histology of, and physical factors affecting, transient GUS expression in pearl millet (Pennisetum glaucum (L.) R. Br.) embryos following microprojectile bombardment
27 schema:pagination 120-125
28 schema:productId N34cc5ca41f5543df85b1ffc9d4c36ee0
29 N7ce9415ca8204e52a9aa13d964711df8
30 N92460fb15dfd45afb727a716c3cf3c79
31 N98071788c28a4a0287b5adef99354797
32 N9a1a910607f440ea81b31129d07ac7d7
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034076592
34 https://doi.org/10.1007/bf00232041
35 schema:sdDatePublished 2019-04-15T08:59
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N4a64e50514bd44e7bfcf926b7509d7c0
38 schema:url http://link.springer.com/10.1007/BF00232041
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N34cc5ca41f5543df85b1ffc9d4c36ee0 schema:name dimensions_id
43 schema:value pub.1034076592
44 rdf:type schema:PropertyValue
45 N4a64e50514bd44e7bfcf926b7509d7c0 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N506039af6dff4584b6c3c20cbac978c1 schema:issueNumber 3
48 rdf:type schema:PublicationIssue
49 N7ce9415ca8204e52a9aa13d964711df8 schema:name doi
50 schema:value 10.1007/bf00232041
51 rdf:type schema:PropertyValue
52 N92460fb15dfd45afb727a716c3cf3c79 schema:name pubmed_id
53 schema:value 24221489
54 rdf:type schema:PropertyValue
55 N938b9a2310b94550816fecb76cd61caf rdf:first sg:person.011541453415.79
56 rdf:rest rdf:nil
57 N98071788c28a4a0287b5adef99354797 schema:name nlm_unique_id
58 schema:value 9880970
59 rdf:type schema:PropertyValue
60 N9a1a910607f440ea81b31129d07ac7d7 schema:name readcube_id
61 schema:value a25515c32cd668b0db9657c6e2538a20dd63cb64bec72e7f3630307273780fd7
62 rdf:type schema:PropertyValue
63 N9de0a77dd6de48c9b0a8a8ddf56dcce7 rdf:first sg:person.01062376070.31
64 rdf:rest N938b9a2310b94550816fecb76cd61caf
65 Na94cf67e8b9044a2bcf47e291af676dc schema:volumeNumber 10
66 rdf:type schema:PublicationVolume
67 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
68 schema:name Biological Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
71 schema:name Biochemistry and Cell Biology
72 rdf:type schema:DefinedTerm
73 sg:journal.1124809 schema:issn 0721-7714
74 1432-203X
75 schema:name Plant Cell Reports
76 rdf:type schema:Periodical
77 sg:person.01062376070.31 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
78 schema:familyName Taylor
79 schema:givenName Mark G.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062376070.31
81 rdf:type schema:Person
82 sg:person.011541453415.79 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
83 schema:familyName Vasil
84 schema:givenName Indra K.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011541453415.79
86 rdf:type schema:Person
87 sg:pub.10.1007/bf00039024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007714524
88 https://doi.org/10.1007/bf00039024
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf00269041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041737222
91 https://doi.org/10.1007/bf00269041
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf00272733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036202123
94 https://doi.org/10.1007/bf00272733
95 rdf:type schema:CreativeWork
96 sg:pub.10.1038/319791a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045509134
97 https://doi.org/10.1038/319791a0
98 rdf:type schema:CreativeWork
99 sg:pub.10.1038/338274a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040743981
100 https://doi.org/10.1038/338274a0
101 rdf:type schema:CreativeWork
102 sg:pub.10.1038/nbt0990-833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025361066
103 https://doi.org/10.1038/nbt0990-833
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/s0065-2660(08)60014-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053410207
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1073/pnas.85.12.4305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031979710
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1093/jxb/41.9.1161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059857201
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1093/oxfordjournals.aob.a086064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083601327
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1104/pp.92.2.334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014805831
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1126/science.2832947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062564675
116 rdf:type schema:CreativeWork
117 https://doi.org/10.2307/3869124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070467195
118 rdf:type schema:CreativeWork
119 https://www.grid.ac/institutes/grid.15276.37 schema:alternateName University of Florida
120 schema:name Laboratory of Plant Cell and Molecular Biology, Department of Vegetable Crops, University of Florida, 32611, Gainesville, FL, USA
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...