Molecular systematics of Brassica and allied genera (Subtribe Brassicinae, Brassiceae) —chloroplast genome and cytodeme congruence View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-07

AUTHORS

S. I. Warwick, L. D. Black

ABSTRACT

Chloroplast DNA restriction sites for 20 endonucleases were mapped using cpDNA probes from Brassica juncea and site variation was surveyed in 33 diploid taxa of the Subtribe Brassicinae. A total of 419 mutations was observed, including both site (i.e., gain/ loss) and fragment length (i.e., insertions or deletions); 221 (53%) mutations showed variation at the interspecific level. Phylogenetic analysis indicated a clear division of the subtribe into two ancient evolutionary lineages. These were (I) the "Nigra" lineage: Brassica nigra, B. fruticulosa, B. tournefortii, Sinapis pubescens, S. alba, S. flexuosa, S. arvensis, Coincya cheiranthos, Erucastrum canariense, and Hirschfeldia incana, and (II) the "Rapa/ Oleracea" lineage: Brassica rapa, B. oleracea ssp. oleracea and ssp. alboglabra, B. rupestris-villosa complex (B. rupestris, B. drepanensis, B. macrocarpa, B. villosa), B. barrelieri, B. deflexa, B. oxyrrhina, B. gravinae, Diplotaxis erucoides, D. tenuifolia, Eruca sativa, Raphanus raphanistrum, R. sativus, and Sinapis aucheri. In the "Nigra" lineage, Brassica nigra was most closely related to the annual Sinapis species, S. arvensis and S. alba. In the "Rapa/Oleracea" lineage, the Brassica rapa and B. oleracea genomes formed a distinct group whose closest relatives were the wild species of the B. oleracea (n=9) complex (i.e., B. rupestris-villosa complex). Species with n=7 chromosomes exist in both lineages. Hirschfeldia incana (n=7), in the "Nigra" lineage, was most closely related to Sinapis pubescens. In the "Rapa/Oleracea" lineage three taxa with n=7 - B. deflexa, D. erucoides, and S. aucheri - were closely related, advanced in the lineage, and were the closest apparent relatives (particularly D. erucoides) to B. rapa, B. oleracea, and its wild relatives. Levels of genetic divergence suggested by the cpDNA data were consistent with cytodeme recognition in the subtribe, but provided evidence for inconsistencies in the current generic delimitations based on morphology. Very low levels of genetic divergence were evident among taxa/accessions within a cytodeme. Raphanus was closely related to the Brassica rapa and B. oleracea genomes and clearly belongs in Subtribe Brassicinae. Several cytoplasmic genetic markers of potential use in plant breeding programs were identified for each of the cytodemes. More... »

PAGES

81-92

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00231281

DOI

http://dx.doi.org/10.1007/bf00231281

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048926215

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24212864


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Agriculture and Agriculture-Food Canada", 
          "id": "https://www.grid.ac/institutes/grid.55614.33", 
          "name": [
            "Agriculture Canada, Research Branch, Central Experimental Farm, Biosystematics Research Center, K1A OC6, Ottawa, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Warwick", 
        "givenName": "S. I.", 
        "id": "sg:person.01065624570.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065624570.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agriculture and Agriculture-Food Canada", 
          "id": "https://www.grid.ac/institutes/grid.55614.33", 
          "name": [
            "Agriculture Canada, Research Branch, Central Experimental Farm, Biosystematics Research Center, K1A OC6, Ottawa, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Black", 
        "givenName": "L. D.", 
        "id": "sg:person.0774527410.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774527410.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1139/g90-021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002826944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1266/jjg.62.119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012175713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4141/cjps82-092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019500493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00265606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025069170", 
          "https://doi.org/10.1007/bf00265606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00265606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025069170", 
          "https://doi.org/10.1007/bf00265606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00260914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029135212", 
          "https://doi.org/10.1007/bf00260914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00260914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029135212", 
          "https://doi.org/10.1007/bf00260914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00308062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029663898", 
          "https://doi.org/10.1007/bf00308062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00308062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029663898", 
          "https://doi.org/10.1007/bf00308062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00308066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035719295", 
          "https://doi.org/10.1007/bf00308066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00308066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035719295", 
          "https://doi.org/10.1007/bf00308066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00226159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038161103", 
          "https://doi.org/10.1007/bf00226159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00226159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038161103", 
          "https://doi.org/10.1007/bf00226159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1442-1984.1986.tb00017.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038415800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/284689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058594812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5962/bhl.part.13184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073563493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.jhered.a110527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083620154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1558-5646.1990.tb05206.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085717134"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1991-07", 
    "datePublishedReg": "1991-07-01", 
    "description": "Chloroplast DNA restriction sites for 20 endonucleases were mapped using cpDNA probes from Brassica juncea and site variation was surveyed in 33 diploid taxa of the Subtribe Brassicinae. A total of 419 mutations was observed, including both site (i.e., gain/ loss) and fragment length (i.e., insertions or deletions); 221 (53%) mutations showed variation at the interspecific level. Phylogenetic analysis indicated a clear division of the subtribe into two ancient evolutionary lineages. These were (I) the \"Nigra\" lineage: Brassica nigra, B. fruticulosa, B. tournefortii, Sinapis pubescens, S. alba, S. flexuosa, S. arvensis, Coincya cheiranthos, Erucastrum canariense, and Hirschfeldia incana, and (II) the \"Rapa/ Oleracea\" lineage: Brassica rapa, B. oleracea ssp. oleracea and ssp. alboglabra, B. rupestris-villosa complex (B. rupestris, B. drepanensis, B. macrocarpa, B. villosa), B. barrelieri, B. deflexa, B. oxyrrhina, B. gravinae, Diplotaxis erucoides, D. tenuifolia, Eruca sativa, Raphanus raphanistrum, R. sativus, and Sinapis aucheri. In the \"Nigra\" lineage, Brassica nigra was most closely related to the annual Sinapis species, S. arvensis and S. alba. In the \"Rapa/Oleracea\" lineage, the Brassica rapa and B. oleracea genomes formed a distinct group whose closest relatives were the wild species of the B. oleracea (n=9) complex (i.e., B. rupestris-villosa complex). Species with n=7 chromosomes exist in both lineages. Hirschfeldia incana (n=7), in the \"Nigra\" lineage, was most closely related to Sinapis pubescens. In the \"Rapa/Oleracea\" lineage three taxa with n=7 - B. deflexa, D. erucoides, and S. aucheri - were closely related, advanced in the lineage, and were the closest apparent relatives (particularly D. erucoides) to B. rapa, B. oleracea, and its wild relatives. Levels of genetic divergence suggested by the cpDNA data were consistent with cytodeme recognition in the subtribe, but provided evidence for inconsistencies in the current generic delimitations based on morphology. Very low levels of genetic divergence were evident among taxa/accessions within a cytodeme. Raphanus was closely related to the Brassica rapa and B. oleracea genomes and clearly belongs in Subtribe Brassicinae. Several cytoplasmic genetic markers of potential use in plant breeding programs were identified for each of the cytodemes. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00231281", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135804", 
        "issn": [
          "0040-5752", 
          "1432-2242"
        ], 
        "name": "Theoretical and Applied Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "82"
      }
    ], 
    "name": "Molecular systematics of Brassica and allied genera (Subtribe Brassicinae, Brassiceae) \u2014chloroplast genome and cytodeme congruence", 
    "pagination": "81-92", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00231281"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e913313d6e5c924769307878e3666793ce39a9ab59c0d4a80101606cf3c08fef"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048926215"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0145600"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24212864"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00231281", 
      "https://app.dimensions.ai/details/publication/pub.1048926215"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91432_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00231281"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00231281'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00231281'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00231281'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00231281'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      21 PREDICATES      42 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00231281 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Nb8d1cac3082f4ca49bc353063180f9bc
4 schema:citation sg:pub.10.1007/bf00226159
5 sg:pub.10.1007/bf00260914
6 sg:pub.10.1007/bf00265606
7 sg:pub.10.1007/bf00308062
8 sg:pub.10.1007/bf00308066
9 https://doi.org/10.1086/284689
10 https://doi.org/10.1093/oxfordjournals.jhered.a110527
11 https://doi.org/10.1111/j.1442-1984.1986.tb00017.x
12 https://doi.org/10.1111/j.1558-5646.1990.tb05206.x
13 https://doi.org/10.1139/g90-021
14 https://doi.org/10.1266/jjg.62.119
15 https://doi.org/10.4141/cjps82-092
16 https://doi.org/10.5962/bhl.part.13184
17 schema:datePublished 1991-07
18 schema:datePublishedReg 1991-07-01
19 schema:description Chloroplast DNA restriction sites for 20 endonucleases were mapped using cpDNA probes from Brassica juncea and site variation was surveyed in 33 diploid taxa of the Subtribe Brassicinae. A total of 419 mutations was observed, including both site (i.e., gain/ loss) and fragment length (i.e., insertions or deletions); 221 (53%) mutations showed variation at the interspecific level. Phylogenetic analysis indicated a clear division of the subtribe into two ancient evolutionary lineages. These were (I) the "Nigra" lineage: Brassica nigra, B. fruticulosa, B. tournefortii, Sinapis pubescens, S. alba, S. flexuosa, S. arvensis, Coincya cheiranthos, Erucastrum canariense, and Hirschfeldia incana, and (II) the "Rapa/ Oleracea" lineage: Brassica rapa, B. oleracea ssp. oleracea and ssp. alboglabra, B. rupestris-villosa complex (B. rupestris, B. drepanensis, B. macrocarpa, B. villosa), B. barrelieri, B. deflexa, B. oxyrrhina, B. gravinae, Diplotaxis erucoides, D. tenuifolia, Eruca sativa, Raphanus raphanistrum, R. sativus, and Sinapis aucheri. In the "Nigra" lineage, Brassica nigra was most closely related to the annual Sinapis species, S. arvensis and S. alba. In the "Rapa/Oleracea" lineage, the Brassica rapa and B. oleracea genomes formed a distinct group whose closest relatives were the wild species of the B. oleracea (n=9) complex (i.e., B. rupestris-villosa complex). Species with n=7 chromosomes exist in both lineages. Hirschfeldia incana (n=7), in the "Nigra" lineage, was most closely related to Sinapis pubescens. In the "Rapa/Oleracea" lineage three taxa with n=7 - B. deflexa, D. erucoides, and S. aucheri - were closely related, advanced in the lineage, and were the closest apparent relatives (particularly D. erucoides) to B. rapa, B. oleracea, and its wild relatives. Levels of genetic divergence suggested by the cpDNA data were consistent with cytodeme recognition in the subtribe, but provided evidence for inconsistencies in the current generic delimitations based on morphology. Very low levels of genetic divergence were evident among taxa/accessions within a cytodeme. Raphanus was closely related to the Brassica rapa and B. oleracea genomes and clearly belongs in Subtribe Brassicinae. Several cytoplasmic genetic markers of potential use in plant breeding programs were identified for each of the cytodemes.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N1c38a35ba8174f0caccea7e7ad7bd6fb
24 Nddf1a0bcb4b94e71b7bcd05c9ecf207d
25 sg:journal.1135804
26 schema:name Molecular systematics of Brassica and allied genera (Subtribe Brassicinae, Brassiceae) —chloroplast genome and cytodeme congruence
27 schema:pagination 81-92
28 schema:productId N2541b6091e774661a2507e7be6c6af69
29 N2790279edf52491eae44248e8bc33fa9
30 N299e43d7274b48a584ef1f0ec7b0a83a
31 N9a3a6c40f2ec4ab983da9614c65cb069
32 Nf1ab3135fe36451aa656e9246bf19ec9
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048926215
34 https://doi.org/10.1007/bf00231281
35 schema:sdDatePublished 2019-04-15T08:59
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Nbc2588a954f640bb980fcae0f62c8323
38 schema:url http://link.springer.com/10.1007/BF00231281
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N1c38a35ba8174f0caccea7e7ad7bd6fb schema:issueNumber 1
43 rdf:type schema:PublicationIssue
44 N2541b6091e774661a2507e7be6c6af69 schema:name doi
45 schema:value 10.1007/bf00231281
46 rdf:type schema:PropertyValue
47 N2790279edf52491eae44248e8bc33fa9 schema:name pubmed_id
48 schema:value 24212864
49 rdf:type schema:PropertyValue
50 N299e43d7274b48a584ef1f0ec7b0a83a schema:name readcube_id
51 schema:value e913313d6e5c924769307878e3666793ce39a9ab59c0d4a80101606cf3c08fef
52 rdf:type schema:PropertyValue
53 N9a3a6c40f2ec4ab983da9614c65cb069 schema:name dimensions_id
54 schema:value pub.1048926215
55 rdf:type schema:PropertyValue
56 Nb8d1cac3082f4ca49bc353063180f9bc rdf:first sg:person.01065624570.48
57 rdf:rest Ne65a8c5280de484ba2352d6c440e4d2e
58 Nbc2588a954f640bb980fcae0f62c8323 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Nddf1a0bcb4b94e71b7bcd05c9ecf207d schema:volumeNumber 82
61 rdf:type schema:PublicationVolume
62 Ne65a8c5280de484ba2352d6c440e4d2e rdf:first sg:person.0774527410.91
63 rdf:rest rdf:nil
64 Nf1ab3135fe36451aa656e9246bf19ec9 schema:name nlm_unique_id
65 schema:value 0145600
66 rdf:type schema:PropertyValue
67 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
68 schema:name Biological Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
71 schema:name Genetics
72 rdf:type schema:DefinedTerm
73 sg:journal.1135804 schema:issn 0040-5752
74 1432-2242
75 schema:name Theoretical and Applied Genetics
76 rdf:type schema:Periodical
77 sg:person.01065624570.48 schema:affiliation https://www.grid.ac/institutes/grid.55614.33
78 schema:familyName Warwick
79 schema:givenName S. I.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065624570.48
81 rdf:type schema:Person
82 sg:person.0774527410.91 schema:affiliation https://www.grid.ac/institutes/grid.55614.33
83 schema:familyName Black
84 schema:givenName L. D.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774527410.91
86 rdf:type schema:Person
87 sg:pub.10.1007/bf00226159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038161103
88 https://doi.org/10.1007/bf00226159
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf00260914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029135212
91 https://doi.org/10.1007/bf00260914
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf00265606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025069170
94 https://doi.org/10.1007/bf00265606
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf00308062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029663898
97 https://doi.org/10.1007/bf00308062
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf00308066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035719295
100 https://doi.org/10.1007/bf00308066
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1086/284689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058594812
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1093/oxfordjournals.jhered.a110527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083620154
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1111/j.1442-1984.1986.tb00017.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038415800
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1111/j.1558-5646.1990.tb05206.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085717134
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1139/g90-021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002826944
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1266/jjg.62.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012175713
113 rdf:type schema:CreativeWork
114 https://doi.org/10.4141/cjps82-092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019500493
115 rdf:type schema:CreativeWork
116 https://doi.org/10.5962/bhl.part.13184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073563493
117 rdf:type schema:CreativeWork
118 https://www.grid.ac/institutes/grid.55614.33 schema:alternateName Agriculture and Agriculture-Food Canada
119 schema:name Agriculture Canada, Research Branch, Central Experimental Farm, Biosystematics Research Center, K1A OC6, Ottawa, Ontario, Canada
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...