A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-09

AUTHORS

B. B. Hicks, D. D. Baldocchi, T. P. Meyers, R. P. Hosker, D. R. Matt

ABSTRACT

Because there is no simple device capable of measuring the dry deposition rates of small particles and trace gases directly, much current activity is focused on the use of an inferential technique. In this method, measurements of atmospheric concentration (C) of selected chemical species are coupled with evaluations of appropriate deposition velocity (Vd) to yield estimates of dry deposition rate from their product. Difficulties arise concerning the ability to measure C, and especially regarding the poor knowledge of Vd for many species. A multiple resistance routine for deriving deposition velocities is presented here. Current knowledge of biological processes is incorporated into a first-generation lsbig leaf’ model; formulations of resistances appropriate for describing individual leaves are combined to simulate the canopy as a whole. The canopy resistance is combined with estimates of aerodynamic and boundary-layer resistances to approximate the total resistance to transfer, from which deposition velocity is then computed. Special emphasis is given to the influence of the diurnal cycle, to the way in which the various transfer resistances can be inferred from routine data, and to the role of canopy factors (e.g., leaf area index, wetness, temperature response, and sunshade fractions). More... »

PAGES

311-330

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00229675

DOI

http://dx.doi.org/10.1007/bf00229675

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037484143


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Plant Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Air Resources Laboratory, Atmospheric Turbulence and Diffusion Division, National Oceanic and Atmospheric Administration, P.O. Box 2456, 37831, Oak Ridge, TN, U.S.A.", 
          "id": "http://www.grid.ac/institutes/grid.436457.7", 
          "name": [
            "Air Resources Laboratory, Atmospheric Turbulence and Diffusion Division, National Oceanic and Atmospheric Administration, P.O. Box 2456, 37831, Oak Ridge, TN, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hicks", 
        "givenName": "B. B.", 
        "id": "sg:person.01064174517.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064174517.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Air Resources Laboratory, Atmospheric Turbulence and Diffusion Division, National Oceanic and Atmospheric Administration, P.O. Box 2456, 37831, Oak Ridge, TN, U.S.A.", 
          "id": "http://www.grid.ac/institutes/grid.436457.7", 
          "name": [
            "Air Resources Laboratory, Atmospheric Turbulence and Diffusion Division, National Oceanic and Atmospheric Administration, P.O. Box 2456, 37831, Oak Ridge, TN, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baldocchi", 
        "givenName": "D. D.", 
        "id": "sg:person.012016462111.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012016462111.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Air Resources Laboratory, Atmospheric Turbulence and Diffusion Division, National Oceanic and Atmospheric Administration, P.O. Box 2456, 37831, Oak Ridge, TN, U.S.A.", 
          "id": "http://www.grid.ac/institutes/grid.436457.7", 
          "name": [
            "Air Resources Laboratory, Atmospheric Turbulence and Diffusion Division, National Oceanic and Atmospheric Administration, P.O. Box 2456, 37831, Oak Ridge, TN, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meyers", 
        "givenName": "T. P.", 
        "id": "sg:person.010565533037.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010565533037.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Air Resources Laboratory, Atmospheric Turbulence and Diffusion Division, National Oceanic and Atmospheric Administration, P.O. Box 2456, 37831, Oak Ridge, TN, U.S.A.", 
          "id": "http://www.grid.ac/institutes/grid.436457.7", 
          "name": [
            "Air Resources Laboratory, Atmospheric Turbulence and Diffusion Division, National Oceanic and Atmospheric Administration, P.O. Box 2456, 37831, Oak Ridge, TN, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hosker", 
        "givenName": "R. P.", 
        "id": "sg:person.0641045057.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641045057.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Air Resources Laboratory, Atmospheric Turbulence and Diffusion Division, National Oceanic and Atmospheric Administration, P.O. Box 2456, 37831, Oak Ridge, TN, U.S.A.", 
          "id": "http://www.grid.ac/institutes/grid.436457.7", 
          "name": [
            "Air Resources Laboratory, Atmospheric Turbulence and Diffusion Division, National Oceanic and Atmospheric Administration, P.O. Box 2456, 37831, Oak Ridge, TN, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matt", 
        "givenName": "D. R.", 
        "id": "sg:person.014070664574.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014070664574.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02419401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040371807", 
          "https://doi.org/10.1007/bf02419401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03335377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005672033", 
          "https://doi.org/10.1007/bf03335377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-7169-1_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041108301", 
          "https://doi.org/10.1007/978-94-009-7169-1_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/247181a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051466700", 
          "https://doi.org/10.1038/247181a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00345138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011813976", 
          "https://doi.org/10.1007/bf00345138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00125000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008647912", 
          "https://doi.org/10.1007/bf00125000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00119281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009738093", 
          "https://doi.org/10.1007/bf00119281"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1987-09", 
    "datePublishedReg": "1987-09-01", 
    "description": "Because there is no simple device capable of measuring the dry deposition rates of small particles and trace gases directly, much current activity is focused on the use of an inferential technique. In this method, measurements of atmospheric concentration (C) of selected chemical species are coupled with evaluations of appropriate deposition velocity (Vd) to yield estimates of dry deposition rate from their product. Difficulties arise concerning the ability to measure C, and especially regarding the poor knowledge of Vd for many species. A multiple resistance routine for deriving deposition velocities is presented here. Current knowledge of biological processes is incorporated into a first-generation lsbig leaf\u2019 model; formulations of resistances appropriate for describing individual leaves are combined to simulate the canopy as a whole. The canopy resistance is combined with estimates of aerodynamic and boundary-layer resistances to approximate the total resistance to transfer, from which deposition velocity is then computed. Special emphasis is given to the influence of the diurnal cycle, to the way in which the various transfer resistances can be inferred from routine data, and to the role of canopy factors (e.g., leaf area index, wetness, temperature response, and sunshade fractions).", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00229675", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1320065", 
        "issn": [
          "0049-6979", 
          "1573-2932"
        ], 
        "name": "Water, Air, & Soil Pollution", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "keywords": [
      "boundary-layer resistance", 
      "deposition rate", 
      "deposition velocity", 
      "transfer resistance", 
      "total resistance", 
      "small particles", 
      "velocity", 
      "simple device", 
      "appropriate deposition velocities", 
      "formulation of resistance", 
      "dry deposition velocities", 
      "dry deposition rates", 
      "canopy resistance", 
      "diurnal cycle", 
      "resistance", 
      "trace gases", 
      "chemical species", 
      "devices", 
      "particles", 
      "gases", 
      "canopy factors", 
      "special emphasis", 
      "measurements", 
      "formulation", 
      "influence", 
      "process", 
      "technique", 
      "atmospheric concentrations", 
      "rate", 
      "current activity", 
      "quantity", 
      "cycle", 
      "method", 
      "model", 
      "estimates", 
      "products", 
      "canopy", 
      "concentration", 
      "routines", 
      "use", 
      "VD", 
      "evaluation", 
      "emphasis", 
      "way", 
      "biological processes", 
      "data", 
      "difficulties", 
      "ability", 
      "inferential techniques", 
      "knowledge", 
      "factors", 
      "whole", 
      "role", 
      "activity", 
      "individual leaves", 
      "current knowledge", 
      "species", 
      "leaves", 
      "poor knowledge", 
      "routine data", 
      "multiple resistance routine", 
      "resistance routine", 
      "first-generation lsbig leaf", 
      "lsbig leaf", 
      "preliminary multiple resistance routine"
    ], 
    "name": "A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities", 
    "pagination": "311-330", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037484143"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00229675"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00229675", 
      "https://app.dimensions.ai/details/publication/pub.1037484143"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_213.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00229675"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00229675'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00229675'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00229675'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00229675'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      22 PREDICATES      98 URIs      83 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00229675 schema:about anzsrc-for:06
2 anzsrc-for:0607
3 schema:author N6e82516d8e9e4ca4a10adac75359e910
4 schema:citation sg:pub.10.1007/978-94-009-7169-1_4
5 sg:pub.10.1007/bf00119281
6 sg:pub.10.1007/bf00125000
7 sg:pub.10.1007/bf00345138
8 sg:pub.10.1007/bf02419401
9 sg:pub.10.1007/bf03335377
10 sg:pub.10.1038/247181a0
11 schema:datePublished 1987-09
12 schema:datePublishedReg 1987-09-01
13 schema:description Because there is no simple device capable of measuring the dry deposition rates of small particles and trace gases directly, much current activity is focused on the use of an inferential technique. In this method, measurements of atmospheric concentration (C) of selected chemical species are coupled with evaluations of appropriate deposition velocity (Vd) to yield estimates of dry deposition rate from their product. Difficulties arise concerning the ability to measure C, and especially regarding the poor knowledge of Vd for many species. A multiple resistance routine for deriving deposition velocities is presented here. Current knowledge of biological processes is incorporated into a first-generation lsbig leaf’ model; formulations of resistances appropriate for describing individual leaves are combined to simulate the canopy as a whole. The canopy resistance is combined with estimates of aerodynamic and boundary-layer resistances to approximate the total resistance to transfer, from which deposition velocity is then computed. Special emphasis is given to the influence of the diurnal cycle, to the way in which the various transfer resistances can be inferred from routine data, and to the role of canopy factors (e.g., leaf area index, wetness, temperature response, and sunshade fractions).
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf Na5d8ff593acb42abb7ca486c213d2b37
18 Nc4631e083fa2406b95edf276c9379970
19 sg:journal.1320065
20 schema:keywords VD
21 ability
22 activity
23 appropriate deposition velocities
24 atmospheric concentrations
25 biological processes
26 boundary-layer resistance
27 canopy
28 canopy factors
29 canopy resistance
30 chemical species
31 concentration
32 current activity
33 current knowledge
34 cycle
35 data
36 deposition rate
37 deposition velocity
38 devices
39 difficulties
40 diurnal cycle
41 dry deposition rates
42 dry deposition velocities
43 emphasis
44 estimates
45 evaluation
46 factors
47 first-generation lsbig leaf
48 formulation
49 formulation of resistance
50 gases
51 individual leaves
52 inferential techniques
53 influence
54 knowledge
55 leaves
56 lsbig leaf
57 measurements
58 method
59 model
60 multiple resistance routine
61 particles
62 poor knowledge
63 preliminary multiple resistance routine
64 process
65 products
66 quantity
67 rate
68 resistance
69 resistance routine
70 role
71 routine data
72 routines
73 simple device
74 small particles
75 special emphasis
76 species
77 technique
78 total resistance
79 trace gases
80 transfer resistance
81 use
82 velocity
83 way
84 whole
85 schema:name A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities
86 schema:pagination 311-330
87 schema:productId N138d80cfb41b423790377c16a1f1ccfe
88 Na6bdc08a881a487ebc20759a6ad6ddc9
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037484143
90 https://doi.org/10.1007/bf00229675
91 schema:sdDatePublished 2021-12-01T19:06
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher N32e11acce4154b6385e7a7afea601484
94 schema:url https://doi.org/10.1007/bf00229675
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N024314a16e4641fd9f6570412c591c98 rdf:first sg:person.014070664574.03
99 rdf:rest rdf:nil
100 N0800cf7e784247fcabf671f3abf8d9b3 rdf:first sg:person.012016462111.20
101 rdf:rest N563dece12b1f46489cfa8b57e70294fa
102 N138d80cfb41b423790377c16a1f1ccfe schema:name doi
103 schema:value 10.1007/bf00229675
104 rdf:type schema:PropertyValue
105 N32e11acce4154b6385e7a7afea601484 schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 N33f2f35006ea449da27bcb8eaedd67d4 rdf:first sg:person.0641045057.25
108 rdf:rest N024314a16e4641fd9f6570412c591c98
109 N563dece12b1f46489cfa8b57e70294fa rdf:first sg:person.010565533037.13
110 rdf:rest N33f2f35006ea449da27bcb8eaedd67d4
111 N6e82516d8e9e4ca4a10adac75359e910 rdf:first sg:person.01064174517.26
112 rdf:rest N0800cf7e784247fcabf671f3abf8d9b3
113 Na5d8ff593acb42abb7ca486c213d2b37 schema:volumeNumber 36
114 rdf:type schema:PublicationVolume
115 Na6bdc08a881a487ebc20759a6ad6ddc9 schema:name dimensions_id
116 schema:value pub.1037484143
117 rdf:type schema:PropertyValue
118 Nc4631e083fa2406b95edf276c9379970 schema:issueNumber 3-4
119 rdf:type schema:PublicationIssue
120 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
121 schema:name Biological Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
124 schema:name Plant Biology
125 rdf:type schema:DefinedTerm
126 sg:journal.1320065 schema:issn 0049-6979
127 1573-2932
128 schema:name Water, Air, & Soil Pollution
129 schema:publisher Springer Nature
130 rdf:type schema:Periodical
131 sg:person.010565533037.13 schema:affiliation grid-institutes:grid.436457.7
132 schema:familyName Meyers
133 schema:givenName T. P.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010565533037.13
135 rdf:type schema:Person
136 sg:person.01064174517.26 schema:affiliation grid-institutes:grid.436457.7
137 schema:familyName Hicks
138 schema:givenName B. B.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064174517.26
140 rdf:type schema:Person
141 sg:person.012016462111.20 schema:affiliation grid-institutes:grid.436457.7
142 schema:familyName Baldocchi
143 schema:givenName D. D.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012016462111.20
145 rdf:type schema:Person
146 sg:person.014070664574.03 schema:affiliation grid-institutes:grid.436457.7
147 schema:familyName Matt
148 schema:givenName D. R.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014070664574.03
150 rdf:type schema:Person
151 sg:person.0641045057.25 schema:affiliation grid-institutes:grid.436457.7
152 schema:familyName Hosker
153 schema:givenName R. P.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641045057.25
155 rdf:type schema:Person
156 sg:pub.10.1007/978-94-009-7169-1_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041108301
157 https://doi.org/10.1007/978-94-009-7169-1_4
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/bf00119281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009738093
160 https://doi.org/10.1007/bf00119281
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/bf00125000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008647912
163 https://doi.org/10.1007/bf00125000
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/bf00345138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011813976
166 https://doi.org/10.1007/bf00345138
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/bf02419401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040371807
169 https://doi.org/10.1007/bf02419401
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/bf03335377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005672033
172 https://doi.org/10.1007/bf03335377
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/247181a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051466700
175 https://doi.org/10.1038/247181a0
176 rdf:type schema:CreativeWork
177 grid-institutes:grid.436457.7 schema:alternateName Air Resources Laboratory, Atmospheric Turbulence and Diffusion Division, National Oceanic and Atmospheric Administration, P.O. Box 2456, 37831, Oak Ridge, TN, U.S.A.
178 schema:name Air Resources Laboratory, Atmospheric Turbulence and Diffusion Division, National Oceanic and Atmospheric Administration, P.O. Box 2456, 37831, Oak Ridge, TN, U.S.A.
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...