A combined use of microprojectile bombardment and DNA imbibition enhances transformation frequency of canola (Brassica napus L.) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-05

AUTHORS

J. L. Chen, W. D. Beversdorf

ABSTRACT

Efforts to increase the frequency of recovered homozygous transgenic B. napus plants from direct DNA transformation treatments led to the development of a method of combined microprojectile bombardment and desiccation/DNA imbibition. The combined method was compared to individual treatments in two experiments utilizing microspore-derived embryo hyocotyls as targets for the β-glucuronidase (GUS) and NPT II genes. Both the transient gene expression of β-GUS and the stable transformation by NPT II demonstrated that the combined use of microprojectile bombardment and desiccation/DNA imbibition yielded more transgenic plants (at least three-times more) than either individual transformation protocol. In a histochemical analysis for β-GUS activity, an average of 37% of the hypocotyls receiving the combined treatment displayed a positive response, whereas only 8% of the hypocotyls showed a positive response following microprojectile bombardment alone. The hypocotyls obtained by the joint treatment also showed more multisite expression of the β-GUS gene per hypocotyl than those treated only with microprojectile bombardment. Southern analysis of NPT II gene integration into subsequently-derived secondary embryos indicated that the transformation efficiency of the combined treatment was 2% in comparison to 0.6% for that of the singular microprojectile bombardment. The number of inserts integrating per transformation event appears to be independent of the transformation methods. Neither of the marker genes was expressed in hypocotyls treated only with desiccation/DNA imbibition. Utilization of hypocotyl regeneration from microspore-derived embryos via a secondary embryogenesis system provided a reliable method for producing transgenic plants. The combined use of microprojectile bombardment and desiccation/DNA imbibition proved to be an efficient approach to obtain homozygous transgenic canola plants. More... »

PAGES

187-192

Journal

TITLE

Theoretical and Applied Genetics

ISSUE

2

VOLUME

88

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00225896

DOI

http://dx.doi.org/10.1007/bf00225896

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021424771

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24185925


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Guelph", 
          "id": "https://www.grid.ac/institutes/grid.34429.38", 
          "name": [
            "Department of Crop Science, University of Guelph, N1G 2W1, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "J. L.", 
        "id": "sg:person.01300000520.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300000520.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Guelph", 
          "id": "https://www.grid.ac/institutes/grid.34429.38", 
          "name": [
            "Department of Crop Science, University of Guelph, N1G 2W1, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beversdorf", 
        "givenName": "W. D.", 
        "id": "sg:person.016241773241.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016241773241.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00367437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000135015", 
          "https://doi.org/10.1007/bf00367437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00367437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000135015", 
          "https://doi.org/10.1007/bf00367437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/327070a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004294325", 
          "https://doi.org/10.1038/327070a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/327070a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004294325", 
          "https://doi.org/10.1038/327070a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.1.1.133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009784380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00034957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013245617", 
          "https://doi.org/10.1007/bf00034957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00034957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013245617", 
          "https://doi.org/10.1007/bf00034957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00224152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013696698", 
          "https://doi.org/10.1007/bf00224152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00224152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013696698", 
          "https://doi.org/10.1007/bf00224152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/19.6.1349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015399349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00288441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015981935", 
          "https://doi.org/10.1007/bf00288441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00288441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015981935", 
          "https://doi.org/10.1007/bf00288441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.72.7.2748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016137287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02667740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017993505", 
          "https://doi.org/10.1007/bf02667740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02667740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017993505", 
          "https://doi.org/10.1007/bf02667740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00015814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018302490", 
          "https://doi.org/10.1007/bf00015814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00015814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018302490", 
          "https://doi.org/10.1007/bf00015814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-9452(91)90109-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019428596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1285-1099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019880884", 
          "https://doi.org/10.1038/nbt1285-1099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00231548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027189751", 
          "https://doi.org/10.1007/bf00231548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00231548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027189751", 
          "https://doi.org/10.1007/bf00231548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00231548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027189751", 
          "https://doi.org/10.1007/bf00231548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0014-4827(68)90403-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027478679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0044-328x(82)80040-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028418245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02079328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029517341", 
          "https://doi.org/10.1007/bf02079328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02079328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029517341", 
          "https://doi.org/10.1007/bf02079328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.ge.11.120177.000455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030353428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-9452(90)90042-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031248470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.pp.42.060191.001225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037696216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(69)90265-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039306363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02623909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039476372", 
          "https://doi.org/10.1007/bf02623909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02623909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039476372", 
          "https://doi.org/10.1007/bf02623909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.95.2.426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041085633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0690-535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044542044", 
          "https://doi.org/10.1038/nbt0690-535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.85.22.8502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053549828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.244.4910.1293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062537917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3869069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070467151"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-05", 
    "datePublishedReg": "1994-05-01", 
    "description": "Efforts to increase the frequency of recovered homozygous transgenic B. napus plants from direct DNA transformation treatments led to the development of a method of combined microprojectile bombardment and desiccation/DNA imbibition. The combined method was compared to individual treatments in two experiments utilizing microspore-derived embryo hyocotyls as targets for the \u03b2-glucuronidase (GUS) and NPT II genes. Both the transient gene expression of \u03b2-GUS and the stable transformation by NPT II demonstrated that the combined use of microprojectile bombardment and desiccation/DNA imbibition yielded more transgenic plants (at least three-times more) than either individual transformation protocol. In a histochemical analysis for \u03b2-GUS activity, an average of 37% of the hypocotyls receiving the combined treatment displayed a positive response, whereas only 8% of the hypocotyls showed a positive response following microprojectile bombardment alone. The hypocotyls obtained by the joint treatment also showed more multisite expression of the \u03b2-GUS gene per hypocotyl than those treated only with microprojectile bombardment. Southern analysis of NPT II gene integration into subsequently-derived secondary embryos indicated that the transformation efficiency of the combined treatment was 2% in comparison to 0.6% for that of the singular microprojectile bombardment. The number of inserts integrating per transformation event appears to be independent of the transformation methods. Neither of the marker genes was expressed in hypocotyls treated only with desiccation/DNA imbibition. Utilization of hypocotyl regeneration from microspore-derived embryos via a secondary embryogenesis system provided a reliable method for producing transgenic plants. The combined use of microprojectile bombardment and desiccation/DNA imbibition proved to be an efficient approach to obtain homozygous transgenic canola plants. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00225896", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135804", 
        "issn": [
          "0040-5752", 
          "1432-2242"
        ], 
        "name": "Theoretical and Applied Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "88"
      }
    ], 
    "name": "A combined use of microprojectile bombardment and DNA imbibition enhances transformation frequency of canola (Brassica napus L.)", 
    "pagination": "187-192", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00225896"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6613d113a4ebfa1b441e81007f9e69f2a5187c6192901e21b4431743b08ade15"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021424771"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0145600"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24185925"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00225896", 
      "https://app.dimensions.ai/details/publication/pub.1021424771"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91456_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00225896"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00225896'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00225896'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00225896'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00225896'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      21 PREDICATES      55 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00225896 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N253859c540c04ad188ace453e087efcb
4 schema:citation sg:pub.10.1007/bf00015814
5 sg:pub.10.1007/bf00034957
6 sg:pub.10.1007/bf00224152
7 sg:pub.10.1007/bf00231548
8 sg:pub.10.1007/bf00288441
9 sg:pub.10.1007/bf00367437
10 sg:pub.10.1007/bf02079328
11 sg:pub.10.1007/bf02623909
12 sg:pub.10.1007/bf02667740
13 sg:pub.10.1038/327070a0
14 sg:pub.10.1038/nbt0690-535
15 sg:pub.10.1038/nbt1285-1099
16 https://doi.org/10.1016/0014-4827(68)90403-5
17 https://doi.org/10.1016/0022-2836(69)90265-4
18 https://doi.org/10.1016/0168-9452(90)90042-m
19 https://doi.org/10.1016/0168-9452(91)90109-l
20 https://doi.org/10.1016/s0044-328x(82)80040-8
21 https://doi.org/10.1073/pnas.72.7.2748
22 https://doi.org/10.1073/pnas.85.22.8502
23 https://doi.org/10.1093/nar/19.6.1349
24 https://doi.org/10.1104/pp.95.2.426
25 https://doi.org/10.1105/tpc.1.1.133
26 https://doi.org/10.1126/science.244.4910.1293
27 https://doi.org/10.1146/annurev.ge.11.120177.000455
28 https://doi.org/10.1146/annurev.pp.42.060191.001225
29 https://doi.org/10.2307/3869069
30 schema:datePublished 1994-05
31 schema:datePublishedReg 1994-05-01
32 schema:description Efforts to increase the frequency of recovered homozygous transgenic B. napus plants from direct DNA transformation treatments led to the development of a method of combined microprojectile bombardment and desiccation/DNA imbibition. The combined method was compared to individual treatments in two experiments utilizing microspore-derived embryo hyocotyls as targets for the β-glucuronidase (GUS) and NPT II genes. Both the transient gene expression of β-GUS and the stable transformation by NPT II demonstrated that the combined use of microprojectile bombardment and desiccation/DNA imbibition yielded more transgenic plants (at least three-times more) than either individual transformation protocol. In a histochemical analysis for β-GUS activity, an average of 37% of the hypocotyls receiving the combined treatment displayed a positive response, whereas only 8% of the hypocotyls showed a positive response following microprojectile bombardment alone. The hypocotyls obtained by the joint treatment also showed more multisite expression of the β-GUS gene per hypocotyl than those treated only with microprojectile bombardment. Southern analysis of NPT II gene integration into subsequently-derived secondary embryos indicated that the transformation efficiency of the combined treatment was 2% in comparison to 0.6% for that of the singular microprojectile bombardment. The number of inserts integrating per transformation event appears to be independent of the transformation methods. Neither of the marker genes was expressed in hypocotyls treated only with desiccation/DNA imbibition. Utilization of hypocotyl regeneration from microspore-derived embryos via a secondary embryogenesis system provided a reliable method for producing transgenic plants. The combined use of microprojectile bombardment and desiccation/DNA imbibition proved to be an efficient approach to obtain homozygous transgenic canola plants.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf Naf1a2225375048429661ed942fb64ca6
37 Nf823e78334c546a59d68c0a945603391
38 sg:journal.1135804
39 schema:name A combined use of microprojectile bombardment and DNA imbibition enhances transformation frequency of canola (Brassica napus L.)
40 schema:pagination 187-192
41 schema:productId N10c4d30973ca40dcbf79232b332ed880
42 N2c84cffe7aa74ae49229304a6ae28454
43 N2eaeafd8bcb543c2a05d3328fd801409
44 N73883cff1fa44ce58c5d086e7000cc51
45 Na8c8c6842b8d42a39d60c8ef99b47cd5
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021424771
47 https://doi.org/10.1007/bf00225896
48 schema:sdDatePublished 2019-04-15T09:02
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Na39fbd620d6242cd9ffbaf5250117da0
51 schema:url http://link.springer.com/10.1007/BF00225896
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N10c4d30973ca40dcbf79232b332ed880 schema:name pubmed_id
56 schema:value 24185925
57 rdf:type schema:PropertyValue
58 N18322671086648ba8973569f88d86795 rdf:first sg:person.016241773241.44
59 rdf:rest rdf:nil
60 N253859c540c04ad188ace453e087efcb rdf:first sg:person.01300000520.47
61 rdf:rest N18322671086648ba8973569f88d86795
62 N2c84cffe7aa74ae49229304a6ae28454 schema:name doi
63 schema:value 10.1007/bf00225896
64 rdf:type schema:PropertyValue
65 N2eaeafd8bcb543c2a05d3328fd801409 schema:name nlm_unique_id
66 schema:value 0145600
67 rdf:type schema:PropertyValue
68 N73883cff1fa44ce58c5d086e7000cc51 schema:name dimensions_id
69 schema:value pub.1021424771
70 rdf:type schema:PropertyValue
71 Na39fbd620d6242cd9ffbaf5250117da0 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 Na8c8c6842b8d42a39d60c8ef99b47cd5 schema:name readcube_id
74 schema:value 6613d113a4ebfa1b441e81007f9e69f2a5187c6192901e21b4431743b08ade15
75 rdf:type schema:PropertyValue
76 Naf1a2225375048429661ed942fb64ca6 schema:volumeNumber 88
77 rdf:type schema:PublicationVolume
78 Nf823e78334c546a59d68c0a945603391 schema:issueNumber 2
79 rdf:type schema:PublicationIssue
80 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
81 schema:name Biological Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
84 schema:name Genetics
85 rdf:type schema:DefinedTerm
86 sg:journal.1135804 schema:issn 0040-5752
87 1432-2242
88 schema:name Theoretical and Applied Genetics
89 rdf:type schema:Periodical
90 sg:person.01300000520.47 schema:affiliation https://www.grid.ac/institutes/grid.34429.38
91 schema:familyName Chen
92 schema:givenName J. L.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300000520.47
94 rdf:type schema:Person
95 sg:person.016241773241.44 schema:affiliation https://www.grid.ac/institutes/grid.34429.38
96 schema:familyName Beversdorf
97 schema:givenName W. D.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016241773241.44
99 rdf:type schema:Person
100 sg:pub.10.1007/bf00015814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018302490
101 https://doi.org/10.1007/bf00015814
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf00034957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013245617
104 https://doi.org/10.1007/bf00034957
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf00224152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013696698
107 https://doi.org/10.1007/bf00224152
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf00231548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027189751
110 https://doi.org/10.1007/bf00231548
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/bf00288441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015981935
113 https://doi.org/10.1007/bf00288441
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/bf00367437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000135015
116 https://doi.org/10.1007/bf00367437
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/bf02079328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029517341
119 https://doi.org/10.1007/bf02079328
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/bf02623909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039476372
122 https://doi.org/10.1007/bf02623909
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/bf02667740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017993505
125 https://doi.org/10.1007/bf02667740
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/327070a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004294325
128 https://doi.org/10.1038/327070a0
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nbt0690-535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044542044
131 https://doi.org/10.1038/nbt0690-535
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nbt1285-1099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019880884
134 https://doi.org/10.1038/nbt1285-1099
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/0014-4827(68)90403-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027478679
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/0022-2836(69)90265-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039306363
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/0168-9452(90)90042-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1031248470
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/0168-9452(91)90109-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1019428596
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/s0044-328x(82)80040-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028418245
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1073/pnas.72.7.2748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016137287
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1073/pnas.85.22.8502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053549828
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1093/nar/19.6.1349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015399349
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1104/pp.95.2.426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041085633
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1105/tpc.1.1.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009784380
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1126/science.244.4910.1293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062537917
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1146/annurev.ge.11.120177.000455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030353428
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1146/annurev.pp.42.060191.001225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037696216
161 rdf:type schema:CreativeWork
162 https://doi.org/10.2307/3869069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070467151
163 rdf:type schema:CreativeWork
164 https://www.grid.ac/institutes/grid.34429.38 schema:alternateName University of Guelph
165 schema:name Department of Crop Science, University of Guelph, N1G 2W1, Ontario, Canada
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...