Molecular markers (RFLPs and HSPs) for the genetic dissection of thermotolerance in maize View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-06

AUTHORS

E. Ottaviano, M. Sari Gorla, E. Pè, C. Frova

ABSTRACT

Cellular membrane stability (CMS) is a physiological index widely used to evaluate thermostability in plants. The genetic basis of the character has been studied following two different approaches: restriction fragment length polymorphism (RFLP) analysis, and the effects of segregating heat shock protein (HSP) loci. RFLP analysis was based on a set of recombinant inbreds derived from the T32 × CM37 F1 hybrid and characterized for about 200 RFLP loci. Heritability of CMS estimated by standard quantitative analysis was 0.73. Regression analysis of CMS on RFLPs detected a minimum number of six quantitative trait loci (QTL) accounting for 53% of the genetic variability. The analysis of the matrices of correlation between RFLP loci, either within or between chromosomes, indicates that no false assignment was produced by this analysis. The effect of HSPs on the variability of the CMS was tested for a low-molecular-weight peptide (HSP-17) showing presence-absence of segregation in the B73 × Pa33 F2 population. Although the genetic variability of the character was very high (h2=0.58) the effect of HSP-17 was not significant, indicating either that the polypeptide is not involved in the determination of the character or that its effect is not statistically detectable. More... »

PAGES

713-719

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00224979

DOI

http://dx.doi.org/10.1007/bf00224979

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013167262

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24221430


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Genetics and Microbiology, University of Milan, Via Celoria 26, I-20133, Milan, Italy", 
          "id": "http://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Department of Genetics and Microbiology, University of Milan, Via Celoria 26, I-20133, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ottaviano", 
        "givenName": "E.", 
        "id": "sg:person.0651750517.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651750517.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Genetics and Microbiology, University of Milan, Via Celoria 26, I-20133, Milan, Italy", 
          "id": "http://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Department of Genetics and Microbiology, University of Milan, Via Celoria 26, I-20133, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sari Gorla", 
        "givenName": "M.", 
        "id": "sg:person.0577233307.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577233307.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Genetics and Microbiology, University of Milan, Via Celoria 26, I-20133, Milan, Italy", 
          "id": "http://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Department of Genetics and Microbiology, University of Milan, Via Celoria 26, I-20133, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "P\u00e8", 
        "givenName": "E.", 
        "id": "sg:person.0713377570.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713377570.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Genetics and Microbiology, University of Milan, Via Celoria 26, I-20133, Milan, Italy", 
          "id": "http://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Department of Genetics and Microbiology, University of Milan, Via Celoria 26, I-20133, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frova", 
        "givenName": "C.", 
        "id": "sg:person.0772033504.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772033504.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-94-009-6207-1_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045754379", 
          "https://doi.org/10.1007/978-94-009-6207-1_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00289970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005290609", 
          "https://doi.org/10.1007/bf00289970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00262500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014985262", 
          "https://doi.org/10.1007/bf00262500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/335721a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029172343", 
          "https://doi.org/10.1038/335721a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00261448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029108827", 
          "https://doi.org/10.1007/bf00261448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-6207-1_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013056315", 
          "https://doi.org/10.1007/978-94-009-6207-1_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00265610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047178417", 
          "https://doi.org/10.1007/bf00265610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1982.61", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049375547", 
          "https://doi.org/10.1038/hdy.1982.61"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00427035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003907247", 
          "https://doi.org/10.1007/bf00427035"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1991-06", 
    "datePublishedReg": "1991-06-01", 
    "description": "Cellular membrane stability (CMS) is a physiological index widely used to evaluate thermostability in plants. The genetic basis of the character has been studied following two different approaches: restriction fragment length polymorphism (RFLP) analysis, and the effects of segregating heat shock protein (HSP) loci. RFLP analysis was based on a set of recombinant inbreds derived from the T32 \u00d7 CM37 F1 hybrid and characterized for about 200 RFLP loci. Heritability of CMS estimated by standard quantitative analysis was 0.73. Regression analysis of CMS on RFLPs detected a minimum number of six quantitative trait loci (QTL) accounting for 53% of the genetic variability. The analysis of the matrices of correlation between RFLP loci, either within or between chromosomes, indicates that no false assignment was produced by this analysis. The effect of HSPs on the variability of the CMS was tested for a low-molecular-weight peptide (HSP-17) showing presence-absence of segregation in the B73 \u00d7 Pa33 F2 population. Although the genetic variability of the character was very high (h2=0.58) the effect of HSP-17 was not significant, indicating either that the polypeptide is not involved in the determination of the character or that its effect is not statistically detectable.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00224979", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135804", 
        "issn": [
          "0040-5752", 
          "1432-2242"
        ], 
        "name": "Theoretical and Applied Genetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "81"
      }
    ], 
    "keywords": [
      "cellular membrane stability", 
      "quantitative trait loci", 
      "RFLP loci", 
      "genetic variability", 
      "heat shock protein locus", 
      "effects of Hsps", 
      "genetic dissection", 
      "protein loci", 
      "B73 \u00d7", 
      "trait loci", 
      "F2 population", 
      "recombinant inbreds", 
      "HSP-17", 
      "restriction fragment length polymorphism analysis", 
      "genetic basis", 
      "fragment length polymorphism analysis", 
      "molecular markers", 
      "RFLP analysis", 
      "membrane stability", 
      "loci", 
      "length polymorphism analysis", 
      "polymorphism analysis", 
      "false assignments", 
      "chromosomes", 
      "RFLPs", 
      "physiological indices", 
      "thermotolerance", 
      "polypeptide", 
      "inbreds", 
      "plants", 
      "heritability", 
      "weight peptides", 
      "maize", 
      "HSP", 
      "thermostability", 
      "variability", 
      "segregation", 
      "character", 
      "F1", 
      "peptides", 
      "markers", 
      "analysis", 
      "population", 
      "effect", 
      "quantitative analysis", 
      "standard quantitative analysis", 
      "basis", 
      "number", 
      "dissection", 
      "assignment", 
      "matrix of correlations", 
      "different approaches", 
      "matrix", 
      "stability", 
      "set", 
      "minimum number", 
      "correlation", 
      "determination", 
      "approach", 
      "index", 
      "regression analysis", 
      "shock protein (HSP) loci", 
      "T32 \u00d7 CM37 F1", 
      "\u00d7 CM37 F1", 
      "CM37 F1", 
      "Heritability of CMS"
    ], 
    "name": "Molecular markers (RFLPs and HSPs) for the genetic dissection of thermotolerance in maize", 
    "pagination": "713-719", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013167262"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00224979"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24221430"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00224979", 
      "https://app.dimensions.ai/details/publication/pub.1013167262"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_248.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00224979"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00224979'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00224979'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00224979'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00224979'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      22 PREDICATES      102 URIs      85 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00224979 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N99a7f37d079746b7b013781c1d8af5d3
4 schema:citation sg:pub.10.1007/978-94-009-6207-1_10
5 sg:pub.10.1007/978-94-009-6207-1_12
6 sg:pub.10.1007/bf00261448
7 sg:pub.10.1007/bf00262500
8 sg:pub.10.1007/bf00265610
9 sg:pub.10.1007/bf00289970
10 sg:pub.10.1007/bf00427035
11 sg:pub.10.1038/335721a0
12 sg:pub.10.1038/hdy.1982.61
13 schema:datePublished 1991-06
14 schema:datePublishedReg 1991-06-01
15 schema:description Cellular membrane stability (CMS) is a physiological index widely used to evaluate thermostability in plants. The genetic basis of the character has been studied following two different approaches: restriction fragment length polymorphism (RFLP) analysis, and the effects of segregating heat shock protein (HSP) loci. RFLP analysis was based on a set of recombinant inbreds derived from the T32 × CM37 F1 hybrid and characterized for about 200 RFLP loci. Heritability of CMS estimated by standard quantitative analysis was 0.73. Regression analysis of CMS on RFLPs detected a minimum number of six quantitative trait loci (QTL) accounting for 53% of the genetic variability. The analysis of the matrices of correlation between RFLP loci, either within or between chromosomes, indicates that no false assignment was produced by this analysis. The effect of HSPs on the variability of the CMS was tested for a low-molecular-weight peptide (HSP-17) showing presence-absence of segregation in the B73 × Pa33 F2 population. Although the genetic variability of the character was very high (h2=0.58) the effect of HSP-17 was not significant, indicating either that the polypeptide is not involved in the determination of the character or that its effect is not statistically detectable.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf Nd494a3e72a8b4d33abe7a62218e02779
20 Nf6125332fd0d43b190f6ba1fce9feaf8
21 sg:journal.1135804
22 schema:keywords B73 ×
23 CM37 F1
24 F1
25 F2 population
26 HSP
27 HSP-17
28 Heritability of CMS
29 RFLP analysis
30 RFLP loci
31 RFLPs
32 T32 × CM37 F1
33 analysis
34 approach
35 assignment
36 basis
37 cellular membrane stability
38 character
39 chromosomes
40 correlation
41 determination
42 different approaches
43 dissection
44 effect
45 effects of Hsps
46 false assignments
47 fragment length polymorphism analysis
48 genetic basis
49 genetic dissection
50 genetic variability
51 heat shock protein locus
52 heritability
53 inbreds
54 index
55 length polymorphism analysis
56 loci
57 maize
58 markers
59 matrix
60 matrix of correlations
61 membrane stability
62 minimum number
63 molecular markers
64 number
65 peptides
66 physiological indices
67 plants
68 polymorphism analysis
69 polypeptide
70 population
71 protein loci
72 quantitative analysis
73 quantitative trait loci
74 recombinant inbreds
75 regression analysis
76 restriction fragment length polymorphism analysis
77 segregation
78 set
79 shock protein (HSP) loci
80 stability
81 standard quantitative analysis
82 thermostability
83 thermotolerance
84 trait loci
85 variability
86 weight peptides
87 × CM37 F1
88 schema:name Molecular markers (RFLPs and HSPs) for the genetic dissection of thermotolerance in maize
89 schema:pagination 713-719
90 schema:productId N82901f18569f4785b3471175b8e995e2
91 Nd09a41e29415478d95d528f0f589d1b8
92 Ne0d0fd839c2e4db7940b8ad256198544
93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013167262
94 https://doi.org/10.1007/bf00224979
95 schema:sdDatePublished 2022-01-01T18:06
96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
97 schema:sdPublisher N50b7a9398b4b47ca8f48c51f948dcedc
98 schema:url https://doi.org/10.1007/bf00224979
99 sgo:license sg:explorer/license/
100 sgo:sdDataset articles
101 rdf:type schema:ScholarlyArticle
102 N50b7a9398b4b47ca8f48c51f948dcedc schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N6f252655eb9744daa3a356bfd173e7aa rdf:first sg:person.0577233307.74
105 rdf:rest Nf91bc1cf31f24ec293300e6f67793281
106 N82901f18569f4785b3471175b8e995e2 schema:name dimensions_id
107 schema:value pub.1013167262
108 rdf:type schema:PropertyValue
109 N99a7f37d079746b7b013781c1d8af5d3 rdf:first sg:person.0651750517.40
110 rdf:rest N6f252655eb9744daa3a356bfd173e7aa
111 Na5655cb401864489bb515cd7f728015d rdf:first sg:person.0772033504.06
112 rdf:rest rdf:nil
113 Nd09a41e29415478d95d528f0f589d1b8 schema:name doi
114 schema:value 10.1007/bf00224979
115 rdf:type schema:PropertyValue
116 Nd494a3e72a8b4d33abe7a62218e02779 schema:issueNumber 6
117 rdf:type schema:PublicationIssue
118 Ne0d0fd839c2e4db7940b8ad256198544 schema:name pubmed_id
119 schema:value 24221430
120 rdf:type schema:PropertyValue
121 Nf6125332fd0d43b190f6ba1fce9feaf8 schema:volumeNumber 81
122 rdf:type schema:PublicationVolume
123 Nf91bc1cf31f24ec293300e6f67793281 rdf:first sg:person.0713377570.32
124 rdf:rest Na5655cb401864489bb515cd7f728015d
125 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
126 schema:name Biological Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
129 schema:name Genetics
130 rdf:type schema:DefinedTerm
131 sg:journal.1135804 schema:issn 0040-5752
132 1432-2242
133 schema:name Theoretical and Applied Genetics
134 schema:publisher Springer Nature
135 rdf:type schema:Periodical
136 sg:person.0577233307.74 schema:affiliation grid-institutes:grid.4708.b
137 schema:familyName Sari Gorla
138 schema:givenName M.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577233307.74
140 rdf:type schema:Person
141 sg:person.0651750517.40 schema:affiliation grid-institutes:grid.4708.b
142 schema:familyName Ottaviano
143 schema:givenName E.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651750517.40
145 rdf:type schema:Person
146 sg:person.0713377570.32 schema:affiliation grid-institutes:grid.4708.b
147 schema:familyName
148 schema:givenName E.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713377570.32
150 rdf:type schema:Person
151 sg:person.0772033504.06 schema:affiliation grid-institutes:grid.4708.b
152 schema:familyName Frova
153 schema:givenName C.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772033504.06
155 rdf:type schema:Person
156 sg:pub.10.1007/978-94-009-6207-1_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013056315
157 https://doi.org/10.1007/978-94-009-6207-1_10
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/978-94-009-6207-1_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045754379
160 https://doi.org/10.1007/978-94-009-6207-1_12
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/bf00261448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029108827
163 https://doi.org/10.1007/bf00261448
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/bf00262500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014985262
166 https://doi.org/10.1007/bf00262500
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/bf00265610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047178417
169 https://doi.org/10.1007/bf00265610
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/bf00289970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005290609
172 https://doi.org/10.1007/bf00289970
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/bf00427035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003907247
175 https://doi.org/10.1007/bf00427035
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/335721a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029172343
178 https://doi.org/10.1038/335721a0
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/hdy.1982.61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049375547
181 https://doi.org/10.1038/hdy.1982.61
182 rdf:type schema:CreativeWork
183 grid-institutes:grid.4708.b schema:alternateName Department of Genetics and Microbiology, University of Milan, Via Celoria 26, I-20133, Milan, Italy
184 schema:name Department of Genetics and Microbiology, University of Milan, Via Celoria 26, I-20133, Milan, Italy
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...