Molecular markers (RFLPs and HSPs) for the genetic dissection of thermotolerance in maize View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-06

AUTHORS

E. Ottaviano, M. Sari Gorla, E. Pè, C. Frova

ABSTRACT

Cellular membrane stability (CMS) is a physiological index widely used to evaluate thermostability in plants. The genetic basis of the character has been studied following two different approaches: restriction fragment length polymorphism (RFLP) analysis, and the effects of segregating heat shock protein (HSP) loci. RFLP analysis was based on a set of recombinant inbreds derived from the T32 × CM37 F1 hybrid and characterized for about 200 RFLP loci. Heritability of CMS estimated by standard quantitative analysis was 0.73. Regression analysis of CMS on RFLPs detected a minimum number of six quantitative trait loci (QTL) accounting for 53% of the genetic variability. The analysis of the matrices of correlation between RFLP loci, either within or between chromosomes, indicates that no false assignment was produced by this analysis. The effect of HSPs on the variability of the CMS was tested for a low-molecular-weight peptide (HSP-17) showing presence-absence of segregation in the B73 × Pa33 F2 population. Although the genetic variability of the character was very high (h2=0.58) the effect of HSP-17 was not significant, indicating either that the polypeptide is not involved in the determination of the character or that its effect is not statistically detectable. More... »

PAGES

713-719

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00224979

DOI

http://dx.doi.org/10.1007/bf00224979

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013167262

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24221430


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Genetics and Microbiology, University of Milan, Via Celoria 26, I-20133, Milan, Italy", 
          "id": "http://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Department of Genetics and Microbiology, University of Milan, Via Celoria 26, I-20133, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ottaviano", 
        "givenName": "E.", 
        "id": "sg:person.0651750517.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651750517.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Genetics and Microbiology, University of Milan, Via Celoria 26, I-20133, Milan, Italy", 
          "id": "http://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Department of Genetics and Microbiology, University of Milan, Via Celoria 26, I-20133, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sari Gorla", 
        "givenName": "M.", 
        "id": "sg:person.0577233307.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577233307.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Genetics and Microbiology, University of Milan, Via Celoria 26, I-20133, Milan, Italy", 
          "id": "http://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Department of Genetics and Microbiology, University of Milan, Via Celoria 26, I-20133, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "P\u00e8", 
        "givenName": "E.", 
        "id": "sg:person.0713377570.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713377570.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Genetics and Microbiology, University of Milan, Via Celoria 26, I-20133, Milan, Italy", 
          "id": "http://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Department of Genetics and Microbiology, University of Milan, Via Celoria 26, I-20133, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frova", 
        "givenName": "C.", 
        "id": "sg:person.0772033504.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772033504.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00427035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003907247", 
          "https://doi.org/10.1007/bf00427035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/335721a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029172343", 
          "https://doi.org/10.1038/335721a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-6207-1_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045754379", 
          "https://doi.org/10.1007/978-94-009-6207-1_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00289970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005290609", 
          "https://doi.org/10.1007/bf00289970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1982.61", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049375547", 
          "https://doi.org/10.1038/hdy.1982.61"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00261448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029108827", 
          "https://doi.org/10.1007/bf00261448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-6207-1_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013056315", 
          "https://doi.org/10.1007/978-94-009-6207-1_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00265610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047178417", 
          "https://doi.org/10.1007/bf00265610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00262500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014985262", 
          "https://doi.org/10.1007/bf00262500"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1991-06", 
    "datePublishedReg": "1991-06-01", 
    "description": "Cellular membrane stability (CMS) is a physiological index widely used to evaluate thermostability in plants. The genetic basis of the character has been studied following two different approaches: restriction fragment length polymorphism (RFLP) analysis, and the effects of segregating heat shock protein (HSP) loci. RFLP analysis was based on a set of recombinant inbreds derived from the T32 \u00d7 CM37 F1 hybrid and characterized for about 200 RFLP loci. Heritability of CMS estimated by standard quantitative analysis was 0.73. Regression analysis of CMS on RFLPs detected a minimum number of six quantitative trait loci (QTL) accounting for 53% of the genetic variability. The analysis of the matrices of correlation between RFLP loci, either within or between chromosomes, indicates that no false assignment was produced by this analysis. The effect of HSPs on the variability of the CMS was tested for a low-molecular-weight peptide (HSP-17) showing presence-absence of segregation in the B73 \u00d7 Pa33 F2 population. Although the genetic variability of the character was very high (h2=0.58) the effect of HSP-17 was not significant, indicating either that the polypeptide is not involved in the determination of the character or that its effect is not statistically detectable.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00224979", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135804", 
        "issn": [
          "0040-5752", 
          "1432-2242"
        ], 
        "name": "Theoretical and Applied Genetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "81"
      }
    ], 
    "keywords": [
      "cellular membrane stability", 
      "quantitative trait loci", 
      "RFLP loci", 
      "genetic variability", 
      "heat shock protein locus", 
      "effects of Hsps", 
      "genetic dissection", 
      "protein loci", 
      "B73 \u00d7", 
      "trait loci", 
      "F2 population", 
      "recombinant inbreds", 
      "HSP-17", 
      "restriction fragment length polymorphism analysis", 
      "genetic basis", 
      "fragment length polymorphism analysis", 
      "molecular markers", 
      "RFLP analysis", 
      "membrane stability", 
      "loci", 
      "length polymorphism analysis", 
      "polymorphism analysis", 
      "false assignments", 
      "chromosomes", 
      "RFLPs", 
      "physiological indices", 
      "thermotolerance", 
      "polypeptide", 
      "inbreds", 
      "plants", 
      "heritability", 
      "weight peptides", 
      "maize", 
      "HSP", 
      "thermostability", 
      "variability", 
      "segregation", 
      "character", 
      "F1", 
      "peptides", 
      "markers", 
      "analysis", 
      "population", 
      "effect", 
      "quantitative analysis", 
      "standard quantitative analysis", 
      "basis", 
      "number", 
      "dissection", 
      "assignment", 
      "matrix of correlations", 
      "different approaches", 
      "matrix", 
      "stability", 
      "set", 
      "minimum number", 
      "correlation", 
      "determination", 
      "approach", 
      "index", 
      "regression analysis"
    ], 
    "name": "Molecular markers (RFLPs and HSPs) for the genetic dissection of thermotolerance in maize", 
    "pagination": "713-719", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013167262"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00224979"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24221430"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00224979", 
      "https://app.dimensions.ai/details/publication/pub.1013167262"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_247.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00224979"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00224979'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00224979'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00224979'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00224979'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      22 PREDICATES      97 URIs      80 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00224979 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N8d7700376b5b4e41a73fede540b4c77a
4 schema:citation sg:pub.10.1007/978-94-009-6207-1_10
5 sg:pub.10.1007/978-94-009-6207-1_12
6 sg:pub.10.1007/bf00261448
7 sg:pub.10.1007/bf00262500
8 sg:pub.10.1007/bf00265610
9 sg:pub.10.1007/bf00289970
10 sg:pub.10.1007/bf00427035
11 sg:pub.10.1038/335721a0
12 sg:pub.10.1038/hdy.1982.61
13 schema:datePublished 1991-06
14 schema:datePublishedReg 1991-06-01
15 schema:description Cellular membrane stability (CMS) is a physiological index widely used to evaluate thermostability in plants. The genetic basis of the character has been studied following two different approaches: restriction fragment length polymorphism (RFLP) analysis, and the effects of segregating heat shock protein (HSP) loci. RFLP analysis was based on a set of recombinant inbreds derived from the T32 × CM37 F1 hybrid and characterized for about 200 RFLP loci. Heritability of CMS estimated by standard quantitative analysis was 0.73. Regression analysis of CMS on RFLPs detected a minimum number of six quantitative trait loci (QTL) accounting for 53% of the genetic variability. The analysis of the matrices of correlation between RFLP loci, either within or between chromosomes, indicates that no false assignment was produced by this analysis. The effect of HSPs on the variability of the CMS was tested for a low-molecular-weight peptide (HSP-17) showing presence-absence of segregation in the B73 × Pa33 F2 population. Although the genetic variability of the character was very high (h2=0.58) the effect of HSP-17 was not significant, indicating either that the polypeptide is not involved in the determination of the character or that its effect is not statistically detectable.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N896db3768cf94cb4a860d6d747872478
20 Nf09d125d33fa4f258ed5c06e5802ca54
21 sg:journal.1135804
22 schema:keywords B73 ×
23 F1
24 F2 population
25 HSP
26 HSP-17
27 RFLP analysis
28 RFLP loci
29 RFLPs
30 analysis
31 approach
32 assignment
33 basis
34 cellular membrane stability
35 character
36 chromosomes
37 correlation
38 determination
39 different approaches
40 dissection
41 effect
42 effects of Hsps
43 false assignments
44 fragment length polymorphism analysis
45 genetic basis
46 genetic dissection
47 genetic variability
48 heat shock protein locus
49 heritability
50 inbreds
51 index
52 length polymorphism analysis
53 loci
54 maize
55 markers
56 matrix
57 matrix of correlations
58 membrane stability
59 minimum number
60 molecular markers
61 number
62 peptides
63 physiological indices
64 plants
65 polymorphism analysis
66 polypeptide
67 population
68 protein loci
69 quantitative analysis
70 quantitative trait loci
71 recombinant inbreds
72 regression analysis
73 restriction fragment length polymorphism analysis
74 segregation
75 set
76 stability
77 standard quantitative analysis
78 thermostability
79 thermotolerance
80 trait loci
81 variability
82 weight peptides
83 schema:name Molecular markers (RFLPs and HSPs) for the genetic dissection of thermotolerance in maize
84 schema:pagination 713-719
85 schema:productId N86da574e79e14c9680dce57b8166bd3c
86 N9dc3bfa8fa0a4da3b0822c15ccff3934
87 Na8b286138ffe4173b7c954e4c4791b58
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013167262
89 https://doi.org/10.1007/bf00224979
90 schema:sdDatePublished 2022-05-20T07:19
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher Nf6bf379958cb4a1ba52ac68bc8b1f529
93 schema:url https://doi.org/10.1007/bf00224979
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N6326f7a1f3774f4088b138ff7d6e07d8 rdf:first sg:person.0772033504.06
98 rdf:rest rdf:nil
99 N70f3a9955d5848649fa967b100f7d1e6 rdf:first sg:person.0713377570.32
100 rdf:rest N6326f7a1f3774f4088b138ff7d6e07d8
101 N86da574e79e14c9680dce57b8166bd3c schema:name dimensions_id
102 schema:value pub.1013167262
103 rdf:type schema:PropertyValue
104 N896db3768cf94cb4a860d6d747872478 schema:volumeNumber 81
105 rdf:type schema:PublicationVolume
106 N8d7700376b5b4e41a73fede540b4c77a rdf:first sg:person.0651750517.40
107 rdf:rest Nb58257a118aa48f89ff9d2f6a7a94b24
108 N9dc3bfa8fa0a4da3b0822c15ccff3934 schema:name pubmed_id
109 schema:value 24221430
110 rdf:type schema:PropertyValue
111 Na8b286138ffe4173b7c954e4c4791b58 schema:name doi
112 schema:value 10.1007/bf00224979
113 rdf:type schema:PropertyValue
114 Nb58257a118aa48f89ff9d2f6a7a94b24 rdf:first sg:person.0577233307.74
115 rdf:rest N70f3a9955d5848649fa967b100f7d1e6
116 Nf09d125d33fa4f258ed5c06e5802ca54 schema:issueNumber 6
117 rdf:type schema:PublicationIssue
118 Nf6bf379958cb4a1ba52ac68bc8b1f529 schema:name Springer Nature - SN SciGraph project
119 rdf:type schema:Organization
120 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
121 schema:name Biological Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
124 schema:name Genetics
125 rdf:type schema:DefinedTerm
126 sg:journal.1135804 schema:issn 0040-5752
127 1432-2242
128 schema:name Theoretical and Applied Genetics
129 schema:publisher Springer Nature
130 rdf:type schema:Periodical
131 sg:person.0577233307.74 schema:affiliation grid-institutes:grid.4708.b
132 schema:familyName Sari Gorla
133 schema:givenName M.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577233307.74
135 rdf:type schema:Person
136 sg:person.0651750517.40 schema:affiliation grid-institutes:grid.4708.b
137 schema:familyName Ottaviano
138 schema:givenName E.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651750517.40
140 rdf:type schema:Person
141 sg:person.0713377570.32 schema:affiliation grid-institutes:grid.4708.b
142 schema:familyName
143 schema:givenName E.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713377570.32
145 rdf:type schema:Person
146 sg:person.0772033504.06 schema:affiliation grid-institutes:grid.4708.b
147 schema:familyName Frova
148 schema:givenName C.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772033504.06
150 rdf:type schema:Person
151 sg:pub.10.1007/978-94-009-6207-1_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013056315
152 https://doi.org/10.1007/978-94-009-6207-1_10
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/978-94-009-6207-1_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045754379
155 https://doi.org/10.1007/978-94-009-6207-1_12
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/bf00261448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029108827
158 https://doi.org/10.1007/bf00261448
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/bf00262500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014985262
161 https://doi.org/10.1007/bf00262500
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/bf00265610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047178417
164 https://doi.org/10.1007/bf00265610
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/bf00289970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005290609
167 https://doi.org/10.1007/bf00289970
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/bf00427035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003907247
170 https://doi.org/10.1007/bf00427035
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/335721a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029172343
173 https://doi.org/10.1038/335721a0
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/hdy.1982.61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049375547
176 https://doi.org/10.1038/hdy.1982.61
177 rdf:type schema:CreativeWork
178 grid-institutes:grid.4708.b schema:alternateName Department of Genetics and Microbiology, University of Milan, Via Celoria 26, I-20133, Milan, Italy
179 schema:name Department of Genetics and Microbiology, University of Milan, Via Celoria 26, I-20133, Milan, Italy
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...