A neural network model for visual motion detection that can explain psychophysical and neurophysiological phenomena View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-01

AUTHORS

Makoto Hirahara, Takashi Nagano

ABSTRACT

This paper proposes a new neural network model for visual motion detection. The model can well explain both psychophysical findings (the changes of displacement thresholds with stimulus velocity and the perception of apparent motion) and neurophysiological findings (the selectivity for the direction and the velocity of a moving stimulus). To confirm the behavior of the model, numerical examinations were conducted. The results were consistent with both psychophysical and neurophysiological findings. More... »

PAGES

247-252

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00224859

DOI

http://dx.doi.org/10.1007/bf00224859

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043342679

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/8452894


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cybernetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Neurological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Motion Perception", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nerve Net", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Psychophysiology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hosei University", 
          "id": "https://www.grid.ac/institutes/grid.257114.4", 
          "name": [
            "College of Engineering, HOSEI University, 3-7-2 Kajinocho, Koganeishi, 184, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hirahara", 
        "givenName": "Makoto", 
        "id": "sg:person.010271650357.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010271650357.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hosei University", 
          "id": "https://www.grid.ac/institutes/grid.257114.4", 
          "name": [
            "College of Engineering, HOSEI University, 3-7-2 Kajinocho, Koganeishi, 184, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagano", 
        "givenName": "Takashi", 
        "id": "sg:person.01034442456.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034442456.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1162/neco.1989.1.4.480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002050193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3169/itej1978.33.479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008924379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1965.sp007638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046300786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.941025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062662067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1986.55.6.1308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079508406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1986.55.6.1328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079923293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1981.45.3.397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082221609"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1993-01", 
    "datePublishedReg": "1993-01-01", 
    "description": "This paper proposes a new neural network model for visual motion detection. The model can well explain both psychophysical findings (the changes of displacement thresholds with stimulus velocity and the perception of apparent motion) and neurophysiological findings (the selectivity for the direction and the velocity of a moving stimulus). To confirm the behavior of the model, numerical examinations were conducted. The results were consistent with both psychophysical and neurophysiological findings.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00224859", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1081741", 
        "issn": [
          "0340-1200", 
          "1432-0770"
        ], 
        "name": "Biological Cybernetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "68"
      }
    ], 
    "name": "A neural network model for visual motion detection that can explain psychophysical and neurophysiological phenomena", 
    "pagination": "247-252", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00224859"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ce754dedaaf7c29ace2ae0573ac4b0fdecd5891fe92f0bab3ceaec9c2df915f7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043342679"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7502533"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "8452894"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00224859", 
      "https://app.dimensions.ai/details/publication/pub.1043342679"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91450_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00224859"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00224859'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00224859'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00224859'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00224859'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      21 PREDICATES      43 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00224859 schema:about N119cc0969ca6450d862dad091d83cdad
2 N1df1a2099caf457da0b47c835c92d599
3 N61b2dd7bcd0146b5b4bf6fda9d459b8f
4 N6d7745bda5484e00beafe7a85e2bc2d0
5 Ne9caffe7283f4fa7a2a188c7ad5f4329
6 Nf8aba470cec8486987cbc8747caa74b5
7 Nffe0d88463b5489c9644a9cb246c4f69
8 anzsrc-for:17
9 anzsrc-for:1701
10 schema:author Nf449f0b82bc54f53abef6c721d54a9c7
11 schema:citation https://doi.org/10.1113/jphysiol.1965.sp007638
12 https://doi.org/10.1126/science.941025
13 https://doi.org/10.1152/jn.1981.45.3.397
14 https://doi.org/10.1152/jn.1986.55.6.1308
15 https://doi.org/10.1152/jn.1986.55.6.1328
16 https://doi.org/10.1162/neco.1989.1.4.480
17 https://doi.org/10.3169/itej1978.33.479
18 schema:datePublished 1993-01
19 schema:datePublishedReg 1993-01-01
20 schema:description This paper proposes a new neural network model for visual motion detection. The model can well explain both psychophysical findings (the changes of displacement thresholds with stimulus velocity and the perception of apparent motion) and neurophysiological findings (the selectivity for the direction and the velocity of a moving stimulus). To confirm the behavior of the model, numerical examinations were conducted. The results were consistent with both psychophysical and neurophysiological findings.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N2a04c47119e5450ab0b03fb67a4f138a
25 N4c52e82fe8784651b79a8b23ad54d2ce
26 sg:journal.1081741
27 schema:name A neural network model for visual motion detection that can explain psychophysical and neurophysiological phenomena
28 schema:pagination 247-252
29 schema:productId N5c1cb13e5ec54b65837b3ce9811d928a
30 Nad73daae98d249b1be0a4c24a6d6b14a
31 Nafa3c081dc714dcc944bf6968f71e030
32 Nb5162d8122a940bab6dc136d7106032a
33 Ndd65209d40a1435ebafc4a5589199ce3
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043342679
35 https://doi.org/10.1007/bf00224859
36 schema:sdDatePublished 2019-04-15T09:01
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N296919b81a6a4c63bfaa23e43ad24aa9
39 schema:url http://link.springer.com/10.1007/BF00224859
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N119cc0969ca6450d862dad091d83cdad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
44 schema:name Models, Neurological
45 rdf:type schema:DefinedTerm
46 N1df1a2099caf457da0b47c835c92d599 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
47 schema:name Psychophysiology
48 rdf:type schema:DefinedTerm
49 N296919b81a6a4c63bfaa23e43ad24aa9 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N2a04c47119e5450ab0b03fb67a4f138a schema:issueNumber 3
52 rdf:type schema:PublicationIssue
53 N4c52e82fe8784651b79a8b23ad54d2ce schema:volumeNumber 68
54 rdf:type schema:PublicationVolume
55 N5c1cb13e5ec54b65837b3ce9811d928a schema:name doi
56 schema:value 10.1007/bf00224859
57 rdf:type schema:PropertyValue
58 N61b2dd7bcd0146b5b4bf6fda9d459b8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Motion Perception
60 rdf:type schema:DefinedTerm
61 N6d7745bda5484e00beafe7a85e2bc2d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Cybernetics
63 rdf:type schema:DefinedTerm
64 N8c233193553c45d0a3a95408aa823a63 rdf:first sg:person.01034442456.31
65 rdf:rest rdf:nil
66 Nad73daae98d249b1be0a4c24a6d6b14a schema:name readcube_id
67 schema:value ce754dedaaf7c29ace2ae0573ac4b0fdecd5891fe92f0bab3ceaec9c2df915f7
68 rdf:type schema:PropertyValue
69 Nafa3c081dc714dcc944bf6968f71e030 schema:name nlm_unique_id
70 schema:value 7502533
71 rdf:type schema:PropertyValue
72 Nb5162d8122a940bab6dc136d7106032a schema:name dimensions_id
73 schema:value pub.1043342679
74 rdf:type schema:PropertyValue
75 Ndd65209d40a1435ebafc4a5589199ce3 schema:name pubmed_id
76 schema:value 8452894
77 rdf:type schema:PropertyValue
78 Ne9caffe7283f4fa7a2a188c7ad5f4329 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Animals
80 rdf:type schema:DefinedTerm
81 Nf449f0b82bc54f53abef6c721d54a9c7 rdf:first sg:person.010271650357.42
82 rdf:rest N8c233193553c45d0a3a95408aa823a63
83 Nf8aba470cec8486987cbc8747caa74b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Humans
85 rdf:type schema:DefinedTerm
86 Nffe0d88463b5489c9644a9cb246c4f69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Nerve Net
88 rdf:type schema:DefinedTerm
89 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
90 schema:name Psychology and Cognitive Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
93 schema:name Psychology
94 rdf:type schema:DefinedTerm
95 sg:journal.1081741 schema:issn 0340-1200
96 1432-0770
97 schema:name Biological Cybernetics
98 rdf:type schema:Periodical
99 sg:person.010271650357.42 schema:affiliation https://www.grid.ac/institutes/grid.257114.4
100 schema:familyName Hirahara
101 schema:givenName Makoto
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010271650357.42
103 rdf:type schema:Person
104 sg:person.01034442456.31 schema:affiliation https://www.grid.ac/institutes/grid.257114.4
105 schema:familyName Nagano
106 schema:givenName Takashi
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034442456.31
108 rdf:type schema:Person
109 https://doi.org/10.1113/jphysiol.1965.sp007638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046300786
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1126/science.941025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062662067
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1152/jn.1981.45.3.397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082221609
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1152/jn.1986.55.6.1308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079508406
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1152/jn.1986.55.6.1328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079923293
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1162/neco.1989.1.4.480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002050193
120 rdf:type schema:CreativeWork
121 https://doi.org/10.3169/itej1978.33.479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008924379
122 rdf:type schema:CreativeWork
123 https://www.grid.ac/institutes/grid.257114.4 schema:alternateName Hosei University
124 schema:name College of Engineering, HOSEI University, 3-7-2 Kajinocho, Koganeishi, 184, Tokyo, Japan
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...