A climate change simulation starting from 1935 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1995-03

AUTHORS

U Cubasch, G C Hegerl, A Hellbach, H Höck, U Mikolajewicz, B D Santer, R Voss

ABSTRACT

Due to restrictions in the available computing resources and a lack of suitable observational data, transient climate change experiments with global coupled ocean-atmosphere models have been started from an initial state at equilibrium with the present day forcing. The historical development of greenhouse gas forcing from the onset of industrialization until the present has therefore been neglected. Studies with simplified models have shown that this “cold start” error leads to a serious underestimation of the anthropogenic global warming. In the present study, a 150-year integration has been carried out with a global coupled ocean-atmosphere model starting from the greenhouse gas concentration observed in 1935, i.e., at an early time of industrialization. The model was forced with observed greenhouse gas concentrations up to 1985, and with the equivalent C02 concentrations stipulated in Scenario A (“Business as Usual”) of the Intergovernmental Panel on Climate Change from 1985 to 2085. The early starting date alleviates some of the cold start problems. The global mean near surface temperature change in 2085 is about 0.3 K (ca. 10%) higher in the early industrialization experiment than in an integration with the same model and identical Scenario A greenhouse gas forcing, but with a start date in 1985. Comparisons between the experiments with early and late start dates show considerable differences in the amplitude of the regional climate change patterns, particularly for sea level. The early industrialization experiment can be used to obtain a first estimate of the detection time for a greenhouse-gas-induced near-surface temperature signal. Detection time estimates are obtained using globally and zonally averaged data from the experiment and a long control run, as well as principal component time series describing the evolution of the dominant signal and noise modes. The latter approach yields the earliest detection time (in the decade 1990–2000) for the time-evolving near-surface temperature signal. For global-mean temperatures or for temperatures averaged between 45°N and 45°S, the signal detection times are in the decades 2015–2025 and 2005–2015, respectively. The reduction of the “cold start” error in the early industrialization experiment makes it possible to separate the near-surface temperature signal from the noise about one decade earlier than in the experiment starting in 1985. We stress that these detection times are only valid in the context of the coupled model's internally-generated natural variability, which possibly underestimates low frequency fluctuations and does not incorporate the variance associated with changes in external forcing factors, such as anthropogenic sulfate aerosols, solar variability or volcanic dust. More... »

PAGES

71-84

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00211674

DOI

http://dx.doi.org/10.1007/bf00211674

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044798574


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Deutsches Klimarechenzentrum, Bundesstr. 55, D-20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.424215.4", 
          "name": [
            "Deutsches Klimarechenzentrum, Bundesstr. 55, D-20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cubasch", 
        "givenName": "U", 
        "id": "sg:person.01207007331.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207007331.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max-Planck-Institut f\u00fcr Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hegerl", 
        "givenName": "G C", 
        "id": "sg:person.0624607120.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624607120.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Deutsches Klimarechenzentrum, Bundesstr. 55, D-20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.424215.4", 
          "name": [
            "Deutsches Klimarechenzentrum, Bundesstr. 55, D-20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hellbach", 
        "givenName": "A", 
        "id": "sg:person.013626620453.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013626620453.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Deutsches Klimarechenzentrum, Bundesstr. 55, D-20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.424215.4", 
          "name": [
            "Deutsches Klimarechenzentrum, Bundesstr. 55, D-20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00f6ck", 
        "givenName": "H", 
        "id": "sg:person.013102572147.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013102572147.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max-Planck-Institut f\u00fcr Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mikolajewicz", 
        "givenName": "U", 
        "id": "sg:person.07735453701.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07735453701.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "PCMDI/Lawrence Livermore National Laboratory, 94550, Livermore, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.250008.f", 
          "name": [
            "PCMDI/Lawrence Livermore National Laboratory, 94550, Livermore, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Santer", 
        "givenName": "B D", 
        "id": "sg:person.01234767320.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234767320.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Deutsches Klimarechenzentrum, Bundesstr. 55, D-20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.424215.4", 
          "name": [
            "Deutsches Klimarechenzentrum, Bundesstr. 55, D-20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Voss", 
        "givenName": "R", 
        "id": "sg:person.014244276466.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014244276466.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/369734a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045908576", 
          "https://doi.org/10.1038/369734a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00144505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038103834", 
          "https://doi.org/10.1007/bf00144505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00208092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036639147", 
          "https://doi.org/10.1007/bf00208092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00209163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030448021", 
          "https://doi.org/10.1007/bf00209163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/345589a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013251505", 
          "https://doi.org/10.1038/345589a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00210008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012875011", 
          "https://doi.org/10.1007/bf00210008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00210333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010636493", 
          "https://doi.org/10.1007/bf00210333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/367634a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035762020", 
          "https://doi.org/10.1038/367634a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00204743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023450325", 
          "https://doi.org/10.1007/bf00204743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/351367a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041427648", 
          "https://doi.org/10.1038/351367a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00209518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011193616", 
          "https://doi.org/10.1007/bf00209518"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995-03", 
    "datePublishedReg": "1995-03-01", 
    "description": "Due to restrictions in the available computing resources and a lack of suitable observational data, transient climate change experiments with global coupled ocean-atmosphere models have been started from an initial state at equilibrium with the present day forcing. The historical development of greenhouse gas forcing from the onset of industrialization until the present has therefore been neglected. Studies with simplified models have shown that this \u201ccold start\u201d error leads to a serious underestimation of the anthropogenic global warming. In the present study, a 150-year integration has been carried out with a global coupled ocean-atmosphere model starting from the greenhouse gas concentration observed in 1935, i.e., at an early time of industrialization. The model was forced with observed greenhouse gas concentrations up to 1985, and with the equivalent C02 concentrations stipulated in Scenario A (\u201cBusiness as Usual\u201d) of the Intergovernmental Panel on Climate Change from 1985 to 2085. The early starting date alleviates some of the cold start problems. The global mean near surface temperature change in 2085 is about 0.3 K (ca. 10%) higher in the early industrialization experiment than in an integration with the same model and identical Scenario A greenhouse gas forcing, but with a start date in 1985. Comparisons between the experiments with early and late start dates show considerable differences in the amplitude of the regional climate change patterns, particularly for sea level. The early industrialization experiment can be used to obtain a first estimate of the detection time for a greenhouse-gas-induced near-surface temperature signal. Detection time estimates are obtained using globally and zonally averaged data from the experiment and a long control run, as well as principal component time series describing the evolution of the dominant signal and noise modes. The latter approach yields the earliest detection time (in the decade 1990\u20132000) for the time-evolving near-surface temperature signal. For global-mean temperatures or for temperatures averaged between 45\u00b0N and 45\u00b0S, the signal detection times are in the decades 2015\u20132025 and 2005\u20132015, respectively. The reduction of the \u201ccold start\u201d error in the early industrialization experiment makes it possible to separate the near-surface temperature signal from the noise about one decade earlier than in the experiment starting in 1985. We stress that these detection times are only valid in the context of the coupled model's internally-generated natural variability, which possibly underestimates low frequency fluctuations and does not incorporate the variance associated with changes in external forcing factors, such as anthropogenic sulfate aerosols, solar variability or volcanic dust.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00211674", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "ocean-atmosphere model", 
      "greenhouse gas concentrations", 
      "temperature signal", 
      "observed greenhouse gas concentrations", 
      "regional climate change patterns", 
      "transient climate change experiments", 
      "principal component time series", 
      "long control run", 
      "greenhouse gas forcing", 
      "climate change simulations", 
      "anthropogenic sulfate aerosols", 
      "external forcing factors", 
      "surface temperature changes", 
      "surface temperature signal", 
      "global mean temperature", 
      "climate change experiments", 
      "climate change patterns", 
      "gas concentration", 
      "component time series", 
      "anthropogenic global warming", 
      "suitable observational data", 
      "earliest detection time", 
      "onset of industrialization", 
      "gas forcing", 
      "signal detection time", 
      "forcing factors", 
      "volcanic dust", 
      "later start dates", 
      "sulfate aerosols", 
      "solar variability", 
      "control run", 
      "change simulations", 
      "sea level", 
      "global mean", 
      "natural variability", 
      "Intergovernmental Panel", 
      "start date", 
      "change experiments", 
      "dominant signal", 
      "climate change", 
      "C02 concentration", 
      "global warming", 
      "greenhouse gas", 
      "observational data", 
      "present day", 
      "time series", 
      "temperature changes", 
      "change patterns", 
      "first estimate", 
      "serious underestimation", 
      "starting date", 
      "time estimates", 
      "scenario A", 
      "variability", 
      "low-frequency fluctuations", 
      "forcing", 
      "warming", 
      "aerosols", 
      "estimates", 
      "same model", 
      "dust", 
      "underestimation", 
      "changes", 
      "considerable differences", 
      "early times", 
      "noise modes", 
      "concentration", 
      "date", 
      "temperature", 
      "frequency fluctuations", 
      "evolution", 
      "model", 
      "industrialization", 
      "fluctuations", 
      "data", 
      "initial state", 
      "simplified model", 
      "error", 
      "gas", 
      "time", 
      "present", 
      "patterns", 
      "amplitude", 
      "run", 
      "signals", 
      "decades", 
      "simulations", 
      "experiments", 
      "equilibrium", 
      "series", 
      "available computing resources", 
      "latter approach", 
      "start", 
      "resources", 
      "onset", 
      "comparison", 
      "variance", 
      "study", 
      "historical development", 
      "integration", 
      "lack", 
      "mode", 
      "differences", 
      "detection time", 
      "days", 
      "means", 
      "present study", 
      "development", 
      "levels", 
      "state", 
      "reduction", 
      "factors", 
      "cold start", 
      "computing resources", 
      "context", 
      "approach", 
      "noise", 
      "panel", 
      "problem", 
      "restriction", 
      "start problem", 
      "cold-start problem"
    ], 
    "name": "A climate change simulation starting from 1935", 
    "pagination": "71-84", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044798574"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00211674"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00211674", 
      "https://app.dimensions.ai/details/publication/pub.1044798574"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_298.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00211674"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00211674'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00211674'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00211674'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00211674'


 

This table displays all metadata directly associated to this object as RDF triples.

271 TRIPLES      21 PREDICATES      158 URIs      139 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00211674 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author Nd243ada54a4741cd9019066d13d5af5e
4 schema:citation sg:pub.10.1007/bf00144505
5 sg:pub.10.1007/bf00204743
6 sg:pub.10.1007/bf00208092
7 sg:pub.10.1007/bf00209163
8 sg:pub.10.1007/bf00209518
9 sg:pub.10.1007/bf00210008
10 sg:pub.10.1007/bf00210333
11 sg:pub.10.1038/345589a0
12 sg:pub.10.1038/351367a0
13 sg:pub.10.1038/367634a0
14 sg:pub.10.1038/369734a0
15 schema:datePublished 1995-03
16 schema:datePublishedReg 1995-03-01
17 schema:description Due to restrictions in the available computing resources and a lack of suitable observational data, transient climate change experiments with global coupled ocean-atmosphere models have been started from an initial state at equilibrium with the present day forcing. The historical development of greenhouse gas forcing from the onset of industrialization until the present has therefore been neglected. Studies with simplified models have shown that this “cold start” error leads to a serious underestimation of the anthropogenic global warming. In the present study, a 150-year integration has been carried out with a global coupled ocean-atmosphere model starting from the greenhouse gas concentration observed in 1935, i.e., at an early time of industrialization. The model was forced with observed greenhouse gas concentrations up to 1985, and with the equivalent C02 concentrations stipulated in Scenario A (“Business as Usual”) of the Intergovernmental Panel on Climate Change from 1985 to 2085. The early starting date alleviates some of the cold start problems. The global mean near surface temperature change in 2085 is about 0.3 K (ca. 10%) higher in the early industrialization experiment than in an integration with the same model and identical Scenario A greenhouse gas forcing, but with a start date in 1985. Comparisons between the experiments with early and late start dates show considerable differences in the amplitude of the regional climate change patterns, particularly for sea level. The early industrialization experiment can be used to obtain a first estimate of the detection time for a greenhouse-gas-induced near-surface temperature signal. Detection time estimates are obtained using globally and zonally averaged data from the experiment and a long control run, as well as principal component time series describing the evolution of the dominant signal and noise modes. The latter approach yields the earliest detection time (in the decade 1990–2000) for the time-evolving near-surface temperature signal. For global-mean temperatures or for temperatures averaged between 45°N and 45°S, the signal detection times are in the decades 2015–2025 and 2005–2015, respectively. The reduction of the “cold start” error in the early industrialization experiment makes it possible to separate the near-surface temperature signal from the noise about one decade earlier than in the experiment starting in 1985. We stress that these detection times are only valid in the context of the coupled model's internally-generated natural variability, which possibly underestimates low frequency fluctuations and does not incorporate the variance associated with changes in external forcing factors, such as anthropogenic sulfate aerosols, solar variability or volcanic dust.
18 schema:genre article
19 schema:isAccessibleForFree true
20 schema:isPartOf N6452f300a05247b4bbe25105dea3c9ec
21 N7dfd833c734c46fb920d2bc30223ae84
22 sg:journal.1049631
23 schema:keywords C02 concentration
24 Intergovernmental Panel
25 aerosols
26 amplitude
27 anthropogenic global warming
28 anthropogenic sulfate aerosols
29 approach
30 available computing resources
31 change experiments
32 change patterns
33 change simulations
34 changes
35 climate change
36 climate change experiments
37 climate change patterns
38 climate change simulations
39 cold start
40 cold-start problem
41 comparison
42 component time series
43 computing resources
44 concentration
45 considerable differences
46 context
47 control run
48 data
49 date
50 days
51 decades
52 detection time
53 development
54 differences
55 dominant signal
56 dust
57 earliest detection time
58 early times
59 equilibrium
60 error
61 estimates
62 evolution
63 experiments
64 external forcing factors
65 factors
66 first estimate
67 fluctuations
68 forcing
69 forcing factors
70 frequency fluctuations
71 gas
72 gas concentration
73 gas forcing
74 global mean
75 global mean temperature
76 global warming
77 greenhouse gas
78 greenhouse gas concentrations
79 greenhouse gas forcing
80 historical development
81 industrialization
82 initial state
83 integration
84 lack
85 later start dates
86 latter approach
87 levels
88 long control run
89 low-frequency fluctuations
90 means
91 mode
92 model
93 natural variability
94 noise
95 noise modes
96 observational data
97 observed greenhouse gas concentrations
98 ocean-atmosphere model
99 onset
100 onset of industrialization
101 panel
102 patterns
103 present
104 present day
105 present study
106 principal component time series
107 problem
108 reduction
109 regional climate change patterns
110 resources
111 restriction
112 run
113 same model
114 scenario A
115 sea level
116 series
117 serious underestimation
118 signal detection time
119 signals
120 simplified model
121 simulations
122 solar variability
123 start
124 start date
125 start problem
126 starting date
127 state
128 study
129 suitable observational data
130 sulfate aerosols
131 surface temperature changes
132 surface temperature signal
133 temperature
134 temperature changes
135 temperature signal
136 time
137 time estimates
138 time series
139 transient climate change experiments
140 underestimation
141 variability
142 variance
143 volcanic dust
144 warming
145 schema:name A climate change simulation starting from 1935
146 schema:pagination 71-84
147 schema:productId N72d9f9d8fcdb4794bf3ab9d81522e84a
148 Ndb8dbe2350f843379d318998d3ed303a
149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044798574
150 https://doi.org/10.1007/bf00211674
151 schema:sdDatePublished 2022-08-04T16:53
152 schema:sdLicense https://scigraph.springernature.com/explorer/license/
153 schema:sdPublisher Nbf2ae21ec80740328323d07808b5106d
154 schema:url https://doi.org/10.1007/bf00211674
155 sgo:license sg:explorer/license/
156 sgo:sdDataset articles
157 rdf:type schema:ScholarlyArticle
158 N61823b527ee248b392fd0407c71ed9cd rdf:first sg:person.014244276466.52
159 rdf:rest rdf:nil
160 N6452f300a05247b4bbe25105dea3c9ec schema:volumeNumber 11
161 rdf:type schema:PublicationVolume
162 N6b61b8562ae942e4b62f9e240ba8e196 rdf:first sg:person.07735453701.56
163 rdf:rest Nbb2480250b7e4b6d85f8b9ede227b524
164 N72d9f9d8fcdb4794bf3ab9d81522e84a schema:name dimensions_id
165 schema:value pub.1044798574
166 rdf:type schema:PropertyValue
167 N7dfd833c734c46fb920d2bc30223ae84 schema:issueNumber 2
168 rdf:type schema:PublicationIssue
169 N80ddafe1ea474002bca53987c09ec9f6 rdf:first sg:person.013102572147.42
170 rdf:rest N6b61b8562ae942e4b62f9e240ba8e196
171 N9aab152193934b50bbed7fbb94b0bee2 rdf:first sg:person.0624607120.80
172 rdf:rest Nbb27c65352d8433e904db49adbda3df3
173 Nbb2480250b7e4b6d85f8b9ede227b524 rdf:first sg:person.01234767320.60
174 rdf:rest N61823b527ee248b392fd0407c71ed9cd
175 Nbb27c65352d8433e904db49adbda3df3 rdf:first sg:person.013626620453.62
176 rdf:rest N80ddafe1ea474002bca53987c09ec9f6
177 Nbf2ae21ec80740328323d07808b5106d schema:name Springer Nature - SN SciGraph project
178 rdf:type schema:Organization
179 Nd243ada54a4741cd9019066d13d5af5e rdf:first sg:person.01207007331.96
180 rdf:rest N9aab152193934b50bbed7fbb94b0bee2
181 Ndb8dbe2350f843379d318998d3ed303a schema:name doi
182 schema:value 10.1007/bf00211674
183 rdf:type schema:PropertyValue
184 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
185 schema:name Earth Sciences
186 rdf:type schema:DefinedTerm
187 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
188 schema:name Physical Geography and Environmental Geoscience
189 rdf:type schema:DefinedTerm
190 sg:journal.1049631 schema:issn 0930-7575
191 1432-0894
192 schema:name Climate Dynamics
193 schema:publisher Springer Nature
194 rdf:type schema:Periodical
195 sg:person.01207007331.96 schema:affiliation grid-institutes:grid.424215.4
196 schema:familyName Cubasch
197 schema:givenName U
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207007331.96
199 rdf:type schema:Person
200 sg:person.01234767320.60 schema:affiliation grid-institutes:grid.250008.f
201 schema:familyName Santer
202 schema:givenName B D
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234767320.60
204 rdf:type schema:Person
205 sg:person.013102572147.42 schema:affiliation grid-institutes:grid.424215.4
206 schema:familyName Höck
207 schema:givenName H
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013102572147.42
209 rdf:type schema:Person
210 sg:person.013626620453.62 schema:affiliation grid-institutes:grid.424215.4
211 schema:familyName Hellbach
212 schema:givenName A
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013626620453.62
214 rdf:type schema:Person
215 sg:person.014244276466.52 schema:affiliation grid-institutes:grid.424215.4
216 schema:familyName Voss
217 schema:givenName R
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014244276466.52
219 rdf:type schema:Person
220 sg:person.0624607120.80 schema:affiliation grid-institutes:grid.450268.d
221 schema:familyName Hegerl
222 schema:givenName G C
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624607120.80
224 rdf:type schema:Person
225 sg:person.07735453701.56 schema:affiliation grid-institutes:grid.450268.d
226 schema:familyName Mikolajewicz
227 schema:givenName U
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07735453701.56
229 rdf:type schema:Person
230 sg:pub.10.1007/bf00144505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038103834
231 https://doi.org/10.1007/bf00144505
232 rdf:type schema:CreativeWork
233 sg:pub.10.1007/bf00204743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023450325
234 https://doi.org/10.1007/bf00204743
235 rdf:type schema:CreativeWork
236 sg:pub.10.1007/bf00208092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036639147
237 https://doi.org/10.1007/bf00208092
238 rdf:type schema:CreativeWork
239 sg:pub.10.1007/bf00209163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030448021
240 https://doi.org/10.1007/bf00209163
241 rdf:type schema:CreativeWork
242 sg:pub.10.1007/bf00209518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011193616
243 https://doi.org/10.1007/bf00209518
244 rdf:type schema:CreativeWork
245 sg:pub.10.1007/bf00210008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012875011
246 https://doi.org/10.1007/bf00210008
247 rdf:type schema:CreativeWork
248 sg:pub.10.1007/bf00210333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010636493
249 https://doi.org/10.1007/bf00210333
250 rdf:type schema:CreativeWork
251 sg:pub.10.1038/345589a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013251505
252 https://doi.org/10.1038/345589a0
253 rdf:type schema:CreativeWork
254 sg:pub.10.1038/351367a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041427648
255 https://doi.org/10.1038/351367a0
256 rdf:type schema:CreativeWork
257 sg:pub.10.1038/367634a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035762020
258 https://doi.org/10.1038/367634a0
259 rdf:type schema:CreativeWork
260 sg:pub.10.1038/369734a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045908576
261 https://doi.org/10.1038/369734a0
262 rdf:type schema:CreativeWork
263 grid-institutes:grid.250008.f schema:alternateName PCMDI/Lawrence Livermore National Laboratory, 94550, Livermore, CA, USA
264 schema:name PCMDI/Lawrence Livermore National Laboratory, 94550, Livermore, CA, USA
265 rdf:type schema:Organization
266 grid-institutes:grid.424215.4 schema:alternateName Deutsches Klimarechenzentrum, Bundesstr. 55, D-20146, Hamburg, Germany
267 schema:name Deutsches Klimarechenzentrum, Bundesstr. 55, D-20146, Hamburg, Germany
268 rdf:type schema:Organization
269 grid-institutes:grid.450268.d schema:alternateName Max-Planck-Institut für Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany
270 schema:name Max-Planck-Institut für Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany
271 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...