An example of fingerprint detection of greenhouse climate change View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-07

AUTHORS

DJ Karoly, JA Cohen, GA Meehl, JFB Mitchell, AH Oort, RJ Stouffer, RT Wetherald

ABSTRACT

As an example of the technique of fingerprint detection of greenhouse climate change, a multivariate signal or fingerprint of the enhanced greenhouse effect is defined using the zonal mean atmospheric temperature change as a function of height and latitude between equilibrium climate model simulations with control and doubled CO2 concentrations. This signal is compared with observed atmospheric temperature variations over the period 1963 to 1988 from radiosonde-based global analyses. There is a significant increase of this greenhouse signal in the observational data over this period.These results must be treated with caution. Upper air data are available for a short period only, possibly too short to be able to resolve any real greenhouse climate change. The greenhouse fingerprint used in this study may not be unique to the enhanced greenhouse effect and may be due to other forcing mechanisms. However, it is shown that the patterns of atmospheric temperature change associated with uniform global increases of sea surface temperature, with El NinoSouthern Oscillation events and with decreases of stratospheric ozone concentrations individually are different from the greenhouse fingerprint used here. More... »

PAGES

97-105

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00210339

DOI

http://dx.doi.org/10.1007/bf00210339

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027699383


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centre for Dynamical Meteorology, Monash University, 3168, Clayton, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1002.3", 
          "name": [
            "Centre for Dynamical Meteorology, Monash University, 3168, Clayton, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karoly", 
        "givenName": "DJ", 
        "id": "sg:person.01134215130.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134215130.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Dynamical Meteorology, Monash University, 3168, Clayton, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1002.3", 
          "name": [
            "Centre for Dynamical Meteorology, Monash University, 3168, Clayton, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cohen", 
        "givenName": "JA", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Center for Atmospheric Research, 80307, Boulder, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.57828.30", 
          "name": [
            "National Center for Atmospheric Research, 80307, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meehl", 
        "givenName": "GA", 
        "id": "sg:person.0667652200.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667652200.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Meteorological Office, RG12 2SZ, Bracknell, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Meteorological Office, RG12 2SZ, Bracknell, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mitchell", 
        "givenName": "JFB", 
        "id": "sg:person.012141527247.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012141527247.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Geophysical Fluid Dynamics Laboratory, NOAA, Princeton University, 08542, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Geophysical Fluid Dynamics Laboratory, NOAA, Princeton University, 08542, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oort", 
        "givenName": "AH", 
        "id": "sg:person.016330125101.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016330125101.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Geophysical Fluid Dynamics Laboratory, NOAA, Princeton University, 08542, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Geophysical Fluid Dynamics Laboratory, NOAA, Princeton University, 08542, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stouffer", 
        "givenName": "RJ", 
        "id": "sg:person.014040550571.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014040550571.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Geophysical Fluid Dynamics Laboratory, NOAA, Princeton University, 08542, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Geophysical Fluid Dynamics Laboratory, NOAA, Princeton University, 08542, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wetherald", 
        "givenName": "RT", 
        "id": "sg:person.0772372250.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772372250.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/355810a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040084439", 
          "https://doi.org/10.1038/355810a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/350573a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043482838", 
          "https://doi.org/10.1038/350573a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00207397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040327896", 
          "https://doi.org/10.1007/bf00207397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/342660a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042981833", 
          "https://doi.org/10.1038/342660a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00144505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038103834", 
          "https://doi.org/10.1007/bf00144505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00208092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036639147", 
          "https://doi.org/10.1007/bf00208092"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-07", 
    "datePublishedReg": "1994-07-01", 
    "description": "As an example of the technique of fingerprint detection of greenhouse climate change, a multivariate signal or fingerprint of the enhanced greenhouse effect is defined using the zonal mean atmospheric temperature change as a function of height and latitude between equilibrium climate model simulations with control and doubled CO2 concentrations. This signal is compared with observed atmospheric temperature variations over the period 1963 to 1988 from radiosonde-based global analyses. There is a significant increase of this greenhouse signal in the observational data over this period.These results must be treated with caution. Upper air data are available for a short period only, possibly too short to be able to resolve any real greenhouse climate change. The greenhouse fingerprint used in this study may not be unique to the enhanced greenhouse effect and may be due to other forcing mechanisms. However, it is shown that the patterns of atmospheric temperature change associated with uniform global increases of sea surface temperature, with El NinoSouthern Oscillation events and with decreases of stratospheric ozone concentrations individually are different from the greenhouse fingerprint used here.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00210339", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "greenhouse climate change", 
      "atmospheric temperature changes", 
      "climate change", 
      "greenhouse effect", 
      "climate model simulations", 
      "sea surface temperature", 
      "enhanced greenhouse effect", 
      "atmospheric temperature variations", 
      "upper air data", 
      "temperature changes", 
      "stratospheric ozone concentrations", 
      "greenhouse signal", 
      "forcing mechanisms", 
      "Oscillation (ENSO) events", 
      "surface temperature", 
      "model simulations", 
      "air data", 
      "CO2 concentration", 
      "observational data", 
      "temperature variation", 
      "global increase", 
      "ozone concentrations", 
      "function of height", 
      "global analysis", 
      "latitudes", 
      "zonal", 
      "short period", 
      "fingerprints", 
      "changes", 
      "period", 
      "events", 
      "variation", 
      "data", 
      "concentration", 
      "temperature", 
      "height", 
      "patterns", 
      "increase", 
      "simulations", 
      "signals", 
      "example", 
      "caution", 
      "decrease", 
      "analysis", 
      "results", 
      "significant increase", 
      "study", 
      "effect", 
      "mechanism", 
      "technique", 
      "control", 
      "detection", 
      "function", 
      "multivariate signals", 
      "fingerprint detection", 
      "equilibrium climate model simulations", 
      "observed atmospheric temperature variations", 
      "real greenhouse climate change", 
      "greenhouse fingerprint", 
      "uniform global increases", 
      "El NinoSouthern Oscillation events", 
      "NinoSouthern Oscillation events"
    ], 
    "name": "An example of fingerprint detection of greenhouse climate change", 
    "pagination": "97-105", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027699383"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00210339"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00210339", 
      "https://app.dimensions.ai/details/publication/pub.1027699383"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_254.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00210339"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00210339'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00210339'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00210339'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00210339'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      22 PREDICATES      94 URIs      80 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00210339 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N8d72320b05e6462ca8c05f3514bb6224
4 schema:citation sg:pub.10.1007/bf00144505
5 sg:pub.10.1007/bf00207397
6 sg:pub.10.1007/bf00208092
7 sg:pub.10.1038/342660a0
8 sg:pub.10.1038/350573a0
9 sg:pub.10.1038/355810a0
10 schema:datePublished 1994-07
11 schema:datePublishedReg 1994-07-01
12 schema:description As an example of the technique of fingerprint detection of greenhouse climate change, a multivariate signal or fingerprint of the enhanced greenhouse effect is defined using the zonal mean atmospheric temperature change as a function of height and latitude between equilibrium climate model simulations with control and doubled CO2 concentrations. This signal is compared with observed atmospheric temperature variations over the period 1963 to 1988 from radiosonde-based global analyses. There is a significant increase of this greenhouse signal in the observational data over this period.These results must be treated with caution. Upper air data are available for a short period only, possibly too short to be able to resolve any real greenhouse climate change. The greenhouse fingerprint used in this study may not be unique to the enhanced greenhouse effect and may be due to other forcing mechanisms. However, it is shown that the patterns of atmospheric temperature change associated with uniform global increases of sea surface temperature, with El NinoSouthern Oscillation events and with decreases of stratospheric ozone concentrations individually are different from the greenhouse fingerprint used here.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N2259a75f5cec490fad49eb3f3298f664
17 Na0e211043e1d4c3cbd23cce93233d2a9
18 sg:journal.1049631
19 schema:keywords CO2 concentration
20 El NinoSouthern Oscillation events
21 NinoSouthern Oscillation events
22 Oscillation (ENSO) events
23 air data
24 analysis
25 atmospheric temperature changes
26 atmospheric temperature variations
27 caution
28 changes
29 climate change
30 climate model simulations
31 concentration
32 control
33 data
34 decrease
35 detection
36 effect
37 enhanced greenhouse effect
38 equilibrium climate model simulations
39 events
40 example
41 fingerprint detection
42 fingerprints
43 forcing mechanisms
44 function
45 function of height
46 global analysis
47 global increase
48 greenhouse climate change
49 greenhouse effect
50 greenhouse fingerprint
51 greenhouse signal
52 height
53 increase
54 latitudes
55 mechanism
56 model simulations
57 multivariate signals
58 observational data
59 observed atmospheric temperature variations
60 ozone concentrations
61 patterns
62 period
63 real greenhouse climate change
64 results
65 sea surface temperature
66 short period
67 signals
68 significant increase
69 simulations
70 stratospheric ozone concentrations
71 study
72 surface temperature
73 technique
74 temperature
75 temperature changes
76 temperature variation
77 uniform global increases
78 upper air data
79 variation
80 zonal
81 schema:name An example of fingerprint detection of greenhouse climate change
82 schema:pagination 97-105
83 schema:productId N06fbd665aae442b9995d7c14f68e4696
84 Nd4402f2b2a4943db968c10a863a57855
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027699383
86 https://doi.org/10.1007/bf00210339
87 schema:sdDatePublished 2021-12-01T19:08
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher Nee9fd45e1d9f4b1aa27caa2f35f1c7bb
90 schema:url https://doi.org/10.1007/bf00210339
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N06fbd665aae442b9995d7c14f68e4696 schema:name doi
95 schema:value 10.1007/bf00210339
96 rdf:type schema:PropertyValue
97 N0705c21b5fec49a798192039e1c6e1a4 rdf:first sg:person.012141527247.99
98 rdf:rest N58449211163340188c1071ffa66369cc
99 N2259a75f5cec490fad49eb3f3298f664 schema:issueNumber 1-2
100 rdf:type schema:PublicationIssue
101 N58449211163340188c1071ffa66369cc rdf:first sg:person.016330125101.24
102 rdf:rest Na3f413f0c73a403491978c0bbd9745b2
103 N8d72320b05e6462ca8c05f3514bb6224 rdf:first sg:person.01134215130.17
104 rdf:rest Naeaf7813cd3a43c9b73c8c1aed919954
105 Na0e211043e1d4c3cbd23cce93233d2a9 schema:volumeNumber 10
106 rdf:type schema:PublicationVolume
107 Na3f413f0c73a403491978c0bbd9745b2 rdf:first sg:person.014040550571.37
108 rdf:rest Nc07a509b44264e12bd8bbc504b6d3eab
109 Naeaf7813cd3a43c9b73c8c1aed919954 rdf:first Nbd4699ef1f314514a1f6500118adad7a
110 rdf:rest Nbd55c4a697004e149964c4fd518c109e
111 Nbd4699ef1f314514a1f6500118adad7a schema:affiliation grid-institutes:grid.1002.3
112 schema:familyName Cohen
113 schema:givenName JA
114 rdf:type schema:Person
115 Nbd55c4a697004e149964c4fd518c109e rdf:first sg:person.0667652200.29
116 rdf:rest N0705c21b5fec49a798192039e1c6e1a4
117 Nc07a509b44264e12bd8bbc504b6d3eab rdf:first sg:person.0772372250.72
118 rdf:rest rdf:nil
119 Nd4402f2b2a4943db968c10a863a57855 schema:name dimensions_id
120 schema:value pub.1027699383
121 rdf:type schema:PropertyValue
122 Nee9fd45e1d9f4b1aa27caa2f35f1c7bb schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
125 schema:name Earth Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
128 schema:name Atmospheric Sciences
129 rdf:type schema:DefinedTerm
130 sg:journal.1049631 schema:issn 0930-7575
131 1432-0894
132 schema:name Climate Dynamics
133 schema:publisher Springer Nature
134 rdf:type schema:Periodical
135 sg:person.01134215130.17 schema:affiliation grid-institutes:grid.1002.3
136 schema:familyName Karoly
137 schema:givenName DJ
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134215130.17
139 rdf:type schema:Person
140 sg:person.012141527247.99 schema:affiliation grid-institutes:grid.17100.37
141 schema:familyName Mitchell
142 schema:givenName JFB
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012141527247.99
144 rdf:type schema:Person
145 sg:person.014040550571.37 schema:affiliation grid-institutes:grid.16750.35
146 schema:familyName Stouffer
147 schema:givenName RJ
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014040550571.37
149 rdf:type schema:Person
150 sg:person.016330125101.24 schema:affiliation grid-institutes:grid.16750.35
151 schema:familyName Oort
152 schema:givenName AH
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016330125101.24
154 rdf:type schema:Person
155 sg:person.0667652200.29 schema:affiliation grid-institutes:grid.57828.30
156 schema:familyName Meehl
157 schema:givenName GA
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667652200.29
159 rdf:type schema:Person
160 sg:person.0772372250.72 schema:affiliation grid-institutes:grid.16750.35
161 schema:familyName Wetherald
162 schema:givenName RT
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772372250.72
164 rdf:type schema:Person
165 sg:pub.10.1007/bf00144505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038103834
166 https://doi.org/10.1007/bf00144505
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/bf00207397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040327896
169 https://doi.org/10.1007/bf00207397
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/bf00208092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036639147
172 https://doi.org/10.1007/bf00208092
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/342660a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042981833
175 https://doi.org/10.1038/342660a0
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/350573a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043482838
178 https://doi.org/10.1038/350573a0
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/355810a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040084439
181 https://doi.org/10.1038/355810a0
182 rdf:type schema:CreativeWork
183 grid-institutes:grid.1002.3 schema:alternateName Centre for Dynamical Meteorology, Monash University, 3168, Clayton, VIC, Australia
184 schema:name Centre for Dynamical Meteorology, Monash University, 3168, Clayton, VIC, Australia
185 rdf:type schema:Organization
186 grid-institutes:grid.16750.35 schema:alternateName Geophysical Fluid Dynamics Laboratory, NOAA, Princeton University, 08542, Princeton, NJ, USA
187 schema:name Geophysical Fluid Dynamics Laboratory, NOAA, Princeton University, 08542, Princeton, NJ, USA
188 rdf:type schema:Organization
189 grid-institutes:grid.17100.37 schema:alternateName Meteorological Office, RG12 2SZ, Bracknell, UK
190 schema:name Meteorological Office, RG12 2SZ, Bracknell, UK
191 rdf:type schema:Organization
192 grid-institutes:grid.57828.30 schema:alternateName National Center for Atmospheric Research, 80307, Boulder, CO, USA
193 schema:name National Center for Atmospheric Research, 80307, Boulder, CO, USA
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...