Monte Carlo climate change forecasts with a global coupled ocean-atmosphere model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1994-07

AUTHORS

U. Cubasch, B. D. Santer, A. Hellbach, G. Hegerl, H. Höck, E. Maier-Reimer, U. Mikolajewicz, A. Stössel, R. Voss

ABSTRACT

Four time-dependent greenhouse warming experiments were performed with the same global coupled atmosphere-ocean model, but with each simulation using initial conditions from different “snapshots” of the control run climate. The radiative forcing — the increase in equivalent CO2 concentrations from 1985–2035 specified in the Intergovernmental Panel on Climate Change (IPCC) scenario A — was identical in all four 50-year integrations. This approach to climate change experiments is called the Monte Carlo technique and is analogous to a similar experimental set-up used in the field of extended range weather forecasting. Despite the limitation of a very small sample size, this approach enables the estimation of both a mean response and the “between-experiment” variability, information which is not available from a single integration. The use of multiple realizations provides insights into the stability of the response, both spatially, seasonally and in terms of different climate variables. The results indicate that the time evolution of the global mean warming signal is strongly dependent on the initial state of the climate system. While the individual members of the ensemble show considerable variation in the pattern and amplitude of near-surface temperature change after 50 years, the ensemble mean climate change pattern closely resembles that obtained in a 100-year integration performed with the same model. In global mean terms, the climate change signals for near surface temperature, the hydrological cycle and sea level significantly exceed the variability among the members of the ensemble. Due to the high internal variability of the modelled climate system, the estimated detection time of the global mean temperature change signal is uncertain by at least one decade. While the ensemble mean surface temperature and sea level fields show regionally significant responses to greenhouse-gas forcing, it is not possible to identify a significant response in the precipitation and soil moisture fields, variables which are spatially noisy and characterized by large variability between the individual integrations. More... »

PAGES

1-19

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00210333

DOI

http://dx.doi.org/10.1007/bf00210333

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010636493


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Deutsches Klimarechenzentrum, Bundesstr. 55, D-20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.424215.4", 
          "name": [
            "Deutsches Klimarechenzentrum, Bundesstr. 55, D-20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cubasch", 
        "givenName": "U.", 
        "id": "sg:person.01207007331.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207007331.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Livermore National Laboratory, Program for Climate Model Diagnosis and Intercomparison, 94550, Livermore, Ca., USA", 
          "id": "http://www.grid.ac/institutes/grid.250008.f", 
          "name": [
            "Lawrence Livermore National Laboratory, Program for Climate Model Diagnosis and Intercomparison, 94550, Livermore, Ca., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Santer", 
        "givenName": "B. D.", 
        "id": "sg:person.01234767320.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234767320.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Deutsches Klimarechenzentrum, Bundesstr. 55, D-20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.424215.4", 
          "name": [
            "Deutsches Klimarechenzentrum, Bundesstr. 55, D-20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hellbach", 
        "givenName": "A.", 
        "id": "sg:person.013626620453.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013626620453.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max-Planck-Institut f\u00fcr Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hegerl", 
        "givenName": "G.", 
        "id": "sg:person.0624607120.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624607120.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max-Planck-Institut f\u00fcr Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00f6ck", 
        "givenName": "H.", 
        "id": "sg:person.013102572147.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013102572147.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max-Planck-Institut f\u00fcr Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maier-Reimer", 
        "givenName": "E.", 
        "id": "sg:person.014145550405.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014145550405.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max-Planck-Institut f\u00fcr Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mikolajewicz", 
        "givenName": "U.", 
        "id": "sg:person.07735453701.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07735453701.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max-Planck-Institut f\u00fcr Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "St\u00f6ssel", 
        "givenName": "A.", 
        "id": "sg:person.011245345121.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011245345121.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Meteorologisches Institut der Universit\u00e4t Hamburg, Bundesstr. 55, D-20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "Meteorologisches Institut der Universit\u00e4t Hamburg, Bundesstr. 55, D-20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Voss", 
        "givenName": "R.", 
        "id": "sg:person.014244276466.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014244276466.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/345589a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013251505", 
          "https://doi.org/10.1038/345589a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/342660a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042981833", 
          "https://doi.org/10.1038/342660a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00207397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040327896", 
          "https://doi.org/10.1007/bf00207397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00210008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012875011", 
          "https://doi.org/10.1007/bf00210008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00204743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023450325", 
          "https://doi.org/10.1007/bf00204743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01053472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027938902", 
          "https://doi.org/10.1007/bf01053472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/344324a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000092146", 
          "https://doi.org/10.1038/344324a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/351367a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041427648", 
          "https://doi.org/10.1038/351367a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00209518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011193616", 
          "https://doi.org/10.1007/bf00209518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00209163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030448021", 
          "https://doi.org/10.1007/bf00209163"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-07", 
    "datePublishedReg": "1994-07-01", 
    "description": "Four time-dependent greenhouse warming experiments were performed with the same global coupled atmosphere-ocean model, but with each simulation using initial conditions from different \u201csnapshots\u201d of the control run climate. The radiative forcing \u2014 the increase in equivalent CO2 concentrations from 1985\u20132035 specified in the Intergovernmental Panel on Climate Change (IPCC) scenario A \u2014 was identical in all four 50-year integrations. This approach to climate change experiments is called the Monte Carlo technique and is analogous to a similar experimental set-up used in the field of extended range weather forecasting. Despite the limitation of a very small sample size, this approach enables the estimation of both a mean response and the \u201cbetween-experiment\u201d variability, information which is not available from a single integration. The use of multiple realizations provides insights into the stability of the response, both spatially, seasonally and in terms of different climate variables. The results indicate that the time evolution of the global mean warming signal is strongly dependent on the initial state of the climate system. While the individual members of the ensemble show considerable variation in the pattern and amplitude of near-surface temperature change after 50 years, the ensemble mean climate change pattern closely resembles that obtained in a 100-year integration performed with the same model. In global mean terms, the climate change signals for near surface temperature, the hydrological cycle and sea level significantly exceed the variability among the members of the ensemble. Due to the high internal variability of the modelled climate system, the estimated detection time of the global mean temperature change signal is uncertain by at least one decade. While the ensemble mean surface temperature and sea level fields show regionally significant responses to greenhouse-gas forcing, it is not possible to identify a significant response in the precipitation and soil moisture fields, variables which are spatially noisy and characterized by large variability between the individual integrations.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00210333", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "climate system", 
      "change signal", 
      "surface temperature", 
      "near-surface temperature changes", 
      "extended-range weather forecasting", 
      "equivalent CO2 concentrations", 
      "atmosphere-ocean model", 
      "greenhouse gas forcing", 
      "ocean-atmosphere model", 
      "climate change signal", 
      "near-surface temperature", 
      "soil moisture fields", 
      "sea level fields", 
      "greenhouse warming experiment", 
      "temperature change signals", 
      "mean surface temperature", 
      "climate change patterns", 
      "high internal variability", 
      "different climate variables", 
      "climate change forecasts", 
      "warming signal", 
      "internal variability", 
      "hydrological cycle", 
      "moisture fields", 
      "sea level", 
      "weather forecasting", 
      "Intergovernmental Panel", 
      "climate variables", 
      "change experiments", 
      "level fields", 
      "warming experiment", 
      "change forecasts", 
      "CO2 concentration", 
      "large variability", 
      "multiple realizations", 
      "temperature changes", 
      "change patterns", 
      "variability", 
      "scenario A", 
      "initial conditions", 
      "significant response", 
      "forcing", 
      "individual integration", 
      "climate", 
      "precipitation", 
      "mean response", 
      "forecasts", 
      "mean term", 
      "time evolution", 
      "same model", 
      "single integration", 
      "forecasting", 
      "considerable variation", 
      "ensemble", 
      "temperature", 
      "evolution", 
      "patterns", 
      "variation", 
      "model", 
      "field", 
      "cycle", 
      "Monte Carlo technique", 
      "initial state", 
      "amplitude", 
      "Carlo technique", 
      "changes", 
      "concentration", 
      "decades", 
      "signals", 
      "simulations", 
      "snapshot", 
      "estimation", 
      "experiments", 
      "conditions", 
      "response", 
      "years", 
      "individual members", 
      "insights", 
      "system", 
      "variables", 
      "increase", 
      "integration", 
      "time", 
      "terms", 
      "information", 
      "results", 
      "members", 
      "approach", 
      "size", 
      "limitations", 
      "levels", 
      "state", 
      "technique", 
      "use", 
      "stability", 
      "detection time", 
      "sample size", 
      "small sample size", 
      "realization", 
      "control", 
      "panel"
    ], 
    "name": "Monte Carlo climate change forecasts with a global coupled ocean-atmosphere model", 
    "pagination": "1-19", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010636493"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00210333"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00210333", 
      "https://app.dimensions.ai/details/publication/pub.1010636493"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_218.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00210333"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00210333'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00210333'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00210333'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00210333'


 

This table displays all metadata directly associated to this object as RDF triples.

271 TRIPLES      21 PREDICATES      138 URIs      118 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00210333 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 anzsrc-for:0405
4 anzsrc-for:0406
5 schema:author N24e84611428746d0ab744abc3d5ea37c
6 schema:citation sg:pub.10.1007/bf00204743
7 sg:pub.10.1007/bf00207397
8 sg:pub.10.1007/bf00209163
9 sg:pub.10.1007/bf00209518
10 sg:pub.10.1007/bf00210008
11 sg:pub.10.1007/bf01053472
12 sg:pub.10.1038/342660a0
13 sg:pub.10.1038/344324a0
14 sg:pub.10.1038/345589a0
15 sg:pub.10.1038/351367a0
16 schema:datePublished 1994-07
17 schema:datePublishedReg 1994-07-01
18 schema:description Four time-dependent greenhouse warming experiments were performed with the same global coupled atmosphere-ocean model, but with each simulation using initial conditions from different “snapshots” of the control run climate. The radiative forcing — the increase in equivalent CO2 concentrations from 1985–2035 specified in the Intergovernmental Panel on Climate Change (IPCC) scenario A — was identical in all four 50-year integrations. This approach to climate change experiments is called the Monte Carlo technique and is analogous to a similar experimental set-up used in the field of extended range weather forecasting. Despite the limitation of a very small sample size, this approach enables the estimation of both a mean response and the “between-experiment” variability, information which is not available from a single integration. The use of multiple realizations provides insights into the stability of the response, both spatially, seasonally and in terms of different climate variables. The results indicate that the time evolution of the global mean warming signal is strongly dependent on the initial state of the climate system. While the individual members of the ensemble show considerable variation in the pattern and amplitude of near-surface temperature change after 50 years, the ensemble mean climate change pattern closely resembles that obtained in a 100-year integration performed with the same model. In global mean terms, the climate change signals for near surface temperature, the hydrological cycle and sea level significantly exceed the variability among the members of the ensemble. Due to the high internal variability of the modelled climate system, the estimated detection time of the global mean temperature change signal is uncertain by at least one decade. While the ensemble mean surface temperature and sea level fields show regionally significant responses to greenhouse-gas forcing, it is not possible to identify a significant response in the precipitation and soil moisture fields, variables which are spatially noisy and characterized by large variability between the individual integrations.
19 schema:genre article
20 schema:isAccessibleForFree true
21 schema:isPartOf Nb690a69a03564cd7923b747445ea2f25
22 Ndb988e14f3684e40972987c538501a08
23 sg:journal.1049631
24 schema:keywords CO2 concentration
25 Carlo technique
26 Intergovernmental Panel
27 Monte Carlo technique
28 amplitude
29 approach
30 atmosphere-ocean model
31 change experiments
32 change forecasts
33 change patterns
34 change signal
35 changes
36 climate
37 climate change forecasts
38 climate change patterns
39 climate change signal
40 climate system
41 climate variables
42 concentration
43 conditions
44 considerable variation
45 control
46 cycle
47 decades
48 detection time
49 different climate variables
50 ensemble
51 equivalent CO2 concentrations
52 estimation
53 evolution
54 experiments
55 extended-range weather forecasting
56 field
57 forcing
58 forecasting
59 forecasts
60 greenhouse gas forcing
61 greenhouse warming experiment
62 high internal variability
63 hydrological cycle
64 increase
65 individual integration
66 individual members
67 information
68 initial conditions
69 initial state
70 insights
71 integration
72 internal variability
73 large variability
74 level fields
75 levels
76 limitations
77 mean response
78 mean surface temperature
79 mean term
80 members
81 model
82 moisture fields
83 multiple realizations
84 near-surface temperature
85 near-surface temperature changes
86 ocean-atmosphere model
87 panel
88 patterns
89 precipitation
90 realization
91 response
92 results
93 same model
94 sample size
95 scenario A
96 sea level
97 sea level fields
98 signals
99 significant response
100 simulations
101 single integration
102 size
103 small sample size
104 snapshot
105 soil moisture fields
106 stability
107 state
108 surface temperature
109 system
110 technique
111 temperature
112 temperature change signals
113 temperature changes
114 terms
115 time
116 time evolution
117 use
118 variability
119 variables
120 variation
121 warming experiment
122 warming signal
123 weather forecasting
124 years
125 schema:name Monte Carlo climate change forecasts with a global coupled ocean-atmosphere model
126 schema:pagination 1-19
127 schema:productId N840c5f4c2bb944c9957e95c0d72fb567
128 Nd338eb2b49754dfbb261c57bc6a7adc0
129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010636493
130 https://doi.org/10.1007/bf00210333
131 schema:sdDatePublished 2022-08-04T16:51
132 schema:sdLicense https://scigraph.springernature.com/explorer/license/
133 schema:sdPublisher Nc9b7efa8619945118953a7314321bc29
134 schema:url https://doi.org/10.1007/bf00210333
135 sgo:license sg:explorer/license/
136 sgo:sdDataset articles
137 rdf:type schema:ScholarlyArticle
138 N24e84611428746d0ab744abc3d5ea37c rdf:first sg:person.01207007331.96
139 rdf:rest N2dbe948e222246aa9e63c42f79113848
140 N2dbe948e222246aa9e63c42f79113848 rdf:first sg:person.01234767320.60
141 rdf:rest Naefe264c38a14ef8a4d963e2d44bdd2b
142 N3ad3df1ff9f74321900515af74981e66 rdf:first sg:person.0624607120.80
143 rdf:rest N672e16feaaf142b3a26d42f82a0ae02e
144 N4733511d498740cda992049a230dfc54 rdf:first sg:person.014244276466.52
145 rdf:rest rdf:nil
146 N672e16feaaf142b3a26d42f82a0ae02e rdf:first sg:person.013102572147.42
147 rdf:rest N6dc1fb5364cf4b288f1aa4937c2c4035
148 N69c8084585f645e3b752596dae67cf1e rdf:first sg:person.07735453701.56
149 rdf:rest N9284ec8c4cdf42c583c21b3c5bab7971
150 N6dc1fb5364cf4b288f1aa4937c2c4035 rdf:first sg:person.014145550405.00
151 rdf:rest N69c8084585f645e3b752596dae67cf1e
152 N840c5f4c2bb944c9957e95c0d72fb567 schema:name dimensions_id
153 schema:value pub.1010636493
154 rdf:type schema:PropertyValue
155 N9284ec8c4cdf42c583c21b3c5bab7971 rdf:first sg:person.011245345121.13
156 rdf:rest N4733511d498740cda992049a230dfc54
157 Naefe264c38a14ef8a4d963e2d44bdd2b rdf:first sg:person.013626620453.62
158 rdf:rest N3ad3df1ff9f74321900515af74981e66
159 Nb690a69a03564cd7923b747445ea2f25 schema:volumeNumber 10
160 rdf:type schema:PublicationVolume
161 Nc9b7efa8619945118953a7314321bc29 schema:name Springer Nature - SN SciGraph project
162 rdf:type schema:Organization
163 Nd338eb2b49754dfbb261c57bc6a7adc0 schema:name doi
164 schema:value 10.1007/bf00210333
165 rdf:type schema:PropertyValue
166 Ndb988e14f3684e40972987c538501a08 schema:issueNumber 1-2
167 rdf:type schema:PublicationIssue
168 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
169 schema:name Earth Sciences
170 rdf:type schema:DefinedTerm
171 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
172 schema:name Atmospheric Sciences
173 rdf:type schema:DefinedTerm
174 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
175 schema:name Oceanography
176 rdf:type schema:DefinedTerm
177 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
178 schema:name Physical Geography and Environmental Geoscience
179 rdf:type schema:DefinedTerm
180 sg:journal.1049631 schema:issn 0930-7575
181 1432-0894
182 schema:name Climate Dynamics
183 schema:publisher Springer Nature
184 rdf:type schema:Periodical
185 sg:person.011245345121.13 schema:affiliation grid-institutes:grid.450268.d
186 schema:familyName Stössel
187 schema:givenName A.
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011245345121.13
189 rdf:type schema:Person
190 sg:person.01207007331.96 schema:affiliation grid-institutes:grid.424215.4
191 schema:familyName Cubasch
192 schema:givenName U.
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207007331.96
194 rdf:type schema:Person
195 sg:person.01234767320.60 schema:affiliation grid-institutes:grid.250008.f
196 schema:familyName Santer
197 schema:givenName B. D.
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234767320.60
199 rdf:type schema:Person
200 sg:person.013102572147.42 schema:affiliation grid-institutes:grid.450268.d
201 schema:familyName Höck
202 schema:givenName H.
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013102572147.42
204 rdf:type schema:Person
205 sg:person.013626620453.62 schema:affiliation grid-institutes:grid.424215.4
206 schema:familyName Hellbach
207 schema:givenName A.
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013626620453.62
209 rdf:type schema:Person
210 sg:person.014145550405.00 schema:affiliation grid-institutes:grid.450268.d
211 schema:familyName Maier-Reimer
212 schema:givenName E.
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014145550405.00
214 rdf:type schema:Person
215 sg:person.014244276466.52 schema:affiliation grid-institutes:grid.9026.d
216 schema:familyName Voss
217 schema:givenName R.
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014244276466.52
219 rdf:type schema:Person
220 sg:person.0624607120.80 schema:affiliation grid-institutes:grid.450268.d
221 schema:familyName Hegerl
222 schema:givenName G.
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624607120.80
224 rdf:type schema:Person
225 sg:person.07735453701.56 schema:affiliation grid-institutes:grid.450268.d
226 schema:familyName Mikolajewicz
227 schema:givenName U.
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07735453701.56
229 rdf:type schema:Person
230 sg:pub.10.1007/bf00204743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023450325
231 https://doi.org/10.1007/bf00204743
232 rdf:type schema:CreativeWork
233 sg:pub.10.1007/bf00207397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040327896
234 https://doi.org/10.1007/bf00207397
235 rdf:type schema:CreativeWork
236 sg:pub.10.1007/bf00209163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030448021
237 https://doi.org/10.1007/bf00209163
238 rdf:type schema:CreativeWork
239 sg:pub.10.1007/bf00209518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011193616
240 https://doi.org/10.1007/bf00209518
241 rdf:type schema:CreativeWork
242 sg:pub.10.1007/bf00210008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012875011
243 https://doi.org/10.1007/bf00210008
244 rdf:type schema:CreativeWork
245 sg:pub.10.1007/bf01053472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027938902
246 https://doi.org/10.1007/bf01053472
247 rdf:type schema:CreativeWork
248 sg:pub.10.1038/342660a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042981833
249 https://doi.org/10.1038/342660a0
250 rdf:type schema:CreativeWork
251 sg:pub.10.1038/344324a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000092146
252 https://doi.org/10.1038/344324a0
253 rdf:type schema:CreativeWork
254 sg:pub.10.1038/345589a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013251505
255 https://doi.org/10.1038/345589a0
256 rdf:type schema:CreativeWork
257 sg:pub.10.1038/351367a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041427648
258 https://doi.org/10.1038/351367a0
259 rdf:type schema:CreativeWork
260 grid-institutes:grid.250008.f schema:alternateName Lawrence Livermore National Laboratory, Program for Climate Model Diagnosis and Intercomparison, 94550, Livermore, Ca., USA
261 schema:name Lawrence Livermore National Laboratory, Program for Climate Model Diagnosis and Intercomparison, 94550, Livermore, Ca., USA
262 rdf:type schema:Organization
263 grid-institutes:grid.424215.4 schema:alternateName Deutsches Klimarechenzentrum, Bundesstr. 55, D-20146, Hamburg, Germany
264 schema:name Deutsches Klimarechenzentrum, Bundesstr. 55, D-20146, Hamburg, Germany
265 rdf:type schema:Organization
266 grid-institutes:grid.450268.d schema:alternateName Max-Planck-Institut für Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany
267 schema:name Max-Planck-Institut für Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany
268 rdf:type schema:Organization
269 grid-institutes:grid.9026.d schema:alternateName Meteorologisches Institut der Universität Hamburg, Bundesstr. 55, D-20146, Hamburg, Germany
270 schema:name Meteorologisches Institut der Universität Hamburg, Bundesstr. 55, D-20146, Hamburg, Germany
271 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...