Ontology type: schema:ScholarlyArticle Open Access: True
1994-07
AUTHORSU. Cubasch, B. D. Santer, A. Hellbach, G. Hegerl, H. Höck, E. Maier-Reimer, U. Mikolajewicz, A. Stössel, R. Voss
ABSTRACTFour time-dependent greenhouse warming experiments were performed with the same global coupled atmosphere-ocean model, but with each simulation using initial conditions from different “snapshots” of the control run climate. The radiative forcing — the increase in equivalent CO2 concentrations from 1985–2035 specified in the Intergovernmental Panel on Climate Change (IPCC) scenario A — was identical in all four 50-year integrations. This approach to climate change experiments is called the Monte Carlo technique and is analogous to a similar experimental set-up used in the field of extended range weather forecasting. Despite the limitation of a very small sample size, this approach enables the estimation of both a mean response and the “between-experiment” variability, information which is not available from a single integration. The use of multiple realizations provides insights into the stability of the response, both spatially, seasonally and in terms of different climate variables. The results indicate that the time evolution of the global mean warming signal is strongly dependent on the initial state of the climate system. While the individual members of the ensemble show considerable variation in the pattern and amplitude of near-surface temperature change after 50 years, the ensemble mean climate change pattern closely resembles that obtained in a 100-year integration performed with the same model. In global mean terms, the climate change signals for near surface temperature, the hydrological cycle and sea level significantly exceed the variability among the members of the ensemble. Due to the high internal variability of the modelled climate system, the estimated detection time of the global mean temperature change signal is uncertain by at least one decade. While the ensemble mean surface temperature and sea level fields show regionally significant responses to greenhouse-gas forcing, it is not possible to identify a significant response in the precipitation and soil moisture fields, variables which are spatially noisy and characterized by large variability between the individual integrations. More... »
PAGES1-19
http://scigraph.springernature.com/pub.10.1007/bf00210333
DOIhttp://dx.doi.org/10.1007/bf00210333
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1010636493
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atmospheric Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Oceanography",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Geography and Environmental Geoscience",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Deutsches Klimarechenzentrum, Bundesstr. 55, D-20146, Hamburg, Germany",
"id": "http://www.grid.ac/institutes/grid.424215.4",
"name": [
"Deutsches Klimarechenzentrum, Bundesstr. 55, D-20146, Hamburg, Germany"
],
"type": "Organization"
},
"familyName": "Cubasch",
"givenName": "U.",
"id": "sg:person.01207007331.96",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207007331.96"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Lawrence Livermore National Laboratory, Program for Climate Model Diagnosis and Intercomparison, 94550, Livermore, Ca., USA",
"id": "http://www.grid.ac/institutes/grid.250008.f",
"name": [
"Lawrence Livermore National Laboratory, Program for Climate Model Diagnosis and Intercomparison, 94550, Livermore, Ca., USA"
],
"type": "Organization"
},
"familyName": "Santer",
"givenName": "B. D.",
"id": "sg:person.01234767320.60",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234767320.60"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Deutsches Klimarechenzentrum, Bundesstr. 55, D-20146, Hamburg, Germany",
"id": "http://www.grid.ac/institutes/grid.424215.4",
"name": [
"Deutsches Klimarechenzentrum, Bundesstr. 55, D-20146, Hamburg, Germany"
],
"type": "Organization"
},
"familyName": "Hellbach",
"givenName": "A.",
"id": "sg:person.013626620453.62",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013626620453.62"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Max-Planck-Institut f\u00fcr Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany",
"id": "http://www.grid.ac/institutes/grid.450268.d",
"name": [
"Max-Planck-Institut f\u00fcr Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany"
],
"type": "Organization"
},
"familyName": "Hegerl",
"givenName": "G.",
"id": "sg:person.0624607120.80",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624607120.80"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Max-Planck-Institut f\u00fcr Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany",
"id": "http://www.grid.ac/institutes/grid.450268.d",
"name": [
"Max-Planck-Institut f\u00fcr Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany"
],
"type": "Organization"
},
"familyName": "H\u00f6ck",
"givenName": "H.",
"id": "sg:person.013102572147.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013102572147.42"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Max-Planck-Institut f\u00fcr Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany",
"id": "http://www.grid.ac/institutes/grid.450268.d",
"name": [
"Max-Planck-Institut f\u00fcr Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany"
],
"type": "Organization"
},
"familyName": "Maier-Reimer",
"givenName": "E.",
"id": "sg:person.014145550405.00",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014145550405.00"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Max-Planck-Institut f\u00fcr Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany",
"id": "http://www.grid.ac/institutes/grid.450268.d",
"name": [
"Max-Planck-Institut f\u00fcr Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany"
],
"type": "Organization"
},
"familyName": "Mikolajewicz",
"givenName": "U.",
"id": "sg:person.07735453701.56",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07735453701.56"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Max-Planck-Institut f\u00fcr Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany",
"id": "http://www.grid.ac/institutes/grid.450268.d",
"name": [
"Max-Planck-Institut f\u00fcr Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany"
],
"type": "Organization"
},
"familyName": "St\u00f6ssel",
"givenName": "A.",
"id": "sg:person.011245345121.13",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011245345121.13"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Meteorologisches Institut der Universit\u00e4t Hamburg, Bundesstr. 55, D-20146, Hamburg, Germany",
"id": "http://www.grid.ac/institutes/grid.9026.d",
"name": [
"Meteorologisches Institut der Universit\u00e4t Hamburg, Bundesstr. 55, D-20146, Hamburg, Germany"
],
"type": "Organization"
},
"familyName": "Voss",
"givenName": "R.",
"id": "sg:person.014244276466.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014244276466.52"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/345589a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013251505",
"https://doi.org/10.1038/345589a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/342660a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042981833",
"https://doi.org/10.1038/342660a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00207397",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040327896",
"https://doi.org/10.1007/bf00207397"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00210008",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012875011",
"https://doi.org/10.1007/bf00210008"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00204743",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023450325",
"https://doi.org/10.1007/bf00204743"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01053472",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027938902",
"https://doi.org/10.1007/bf01053472"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/344324a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000092146",
"https://doi.org/10.1038/344324a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/351367a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041427648",
"https://doi.org/10.1038/351367a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00209518",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011193616",
"https://doi.org/10.1007/bf00209518"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00209163",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030448021",
"https://doi.org/10.1007/bf00209163"
],
"type": "CreativeWork"
}
],
"datePublished": "1994-07",
"datePublishedReg": "1994-07-01",
"description": "Four time-dependent greenhouse warming experiments were performed with the same global coupled atmosphere-ocean model, but with each simulation using initial conditions from different \u201csnapshots\u201d of the control run climate. The radiative forcing \u2014 the increase in equivalent CO2 concentrations from 1985\u20132035 specified in the Intergovernmental Panel on Climate Change (IPCC) scenario A \u2014 was identical in all four 50-year integrations. This approach to climate change experiments is called the Monte Carlo technique and is analogous to a similar experimental set-up used in the field of extended range weather forecasting. Despite the limitation of a very small sample size, this approach enables the estimation of both a mean response and the \u201cbetween-experiment\u201d variability, information which is not available from a single integration. The use of multiple realizations provides insights into the stability of the response, both spatially, seasonally and in terms of different climate variables. The results indicate that the time evolution of the global mean warming signal is strongly dependent on the initial state of the climate system. While the individual members of the ensemble show considerable variation in the pattern and amplitude of near-surface temperature change after 50 years, the ensemble mean climate change pattern closely resembles that obtained in a 100-year integration performed with the same model. In global mean terms, the climate change signals for near surface temperature, the hydrological cycle and sea level significantly exceed the variability among the members of the ensemble. Due to the high internal variability of the modelled climate system, the estimated detection time of the global mean temperature change signal is uncertain by at least one decade. While the ensemble mean surface temperature and sea level fields show regionally significant responses to greenhouse-gas forcing, it is not possible to identify a significant response in the precipitation and soil moisture fields, variables which are spatially noisy and characterized by large variability between the individual integrations.",
"genre": "article",
"id": "sg:pub.10.1007/bf00210333",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1049631",
"issn": [
"0930-7575",
"1432-0894"
],
"name": "Climate Dynamics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1-2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "10"
}
],
"keywords": [
"climate system",
"change signal",
"surface temperature",
"near-surface temperature changes",
"extended-range weather forecasting",
"equivalent CO2 concentrations",
"atmosphere-ocean model",
"greenhouse gas forcing",
"ocean-atmosphere model",
"climate change signal",
"near-surface temperature",
"soil moisture fields",
"sea level fields",
"greenhouse warming experiment",
"temperature change signals",
"mean surface temperature",
"climate change patterns",
"high internal variability",
"different climate variables",
"climate change forecasts",
"warming signal",
"internal variability",
"hydrological cycle",
"moisture fields",
"sea level",
"weather forecasting",
"Intergovernmental Panel",
"climate variables",
"change experiments",
"level fields",
"warming experiment",
"change forecasts",
"CO2 concentration",
"large variability",
"multiple realizations",
"temperature changes",
"change patterns",
"variability",
"scenario A",
"initial conditions",
"significant response",
"forcing",
"individual integration",
"climate",
"precipitation",
"mean response",
"forecasts",
"mean term",
"time evolution",
"same model",
"single integration",
"forecasting",
"considerable variation",
"ensemble",
"temperature",
"evolution",
"patterns",
"variation",
"model",
"field",
"cycle",
"Monte Carlo technique",
"initial state",
"amplitude",
"Carlo technique",
"changes",
"concentration",
"decades",
"signals",
"simulations",
"snapshot",
"estimation",
"experiments",
"conditions",
"response",
"years",
"individual members",
"insights",
"system",
"variables",
"increase",
"integration",
"time",
"terms",
"information",
"results",
"members",
"approach",
"size",
"limitations",
"levels",
"state",
"technique",
"use",
"stability",
"detection time",
"sample size",
"small sample size",
"realization",
"control",
"panel"
],
"name": "Monte Carlo climate change forecasts with a global coupled ocean-atmosphere model",
"pagination": "1-19",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1010636493"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf00210333"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf00210333",
"https://app.dimensions.ai/details/publication/pub.1010636493"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:51",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_218.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf00210333"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00210333'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00210333'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00210333'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00210333'
This table displays all metadata directly associated to this object as RDF triples.
271 TRIPLES
21 PREDICATES
138 URIs
118 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf00210333 | schema:about | anzsrc-for:04 |
2 | ″ | ″ | anzsrc-for:0401 |
3 | ″ | ″ | anzsrc-for:0405 |
4 | ″ | ″ | anzsrc-for:0406 |
5 | ″ | schema:author | N24e84611428746d0ab744abc3d5ea37c |
6 | ″ | schema:citation | sg:pub.10.1007/bf00204743 |
7 | ″ | ″ | sg:pub.10.1007/bf00207397 |
8 | ″ | ″ | sg:pub.10.1007/bf00209163 |
9 | ″ | ″ | sg:pub.10.1007/bf00209518 |
10 | ″ | ″ | sg:pub.10.1007/bf00210008 |
11 | ″ | ″ | sg:pub.10.1007/bf01053472 |
12 | ″ | ″ | sg:pub.10.1038/342660a0 |
13 | ″ | ″ | sg:pub.10.1038/344324a0 |
14 | ″ | ″ | sg:pub.10.1038/345589a0 |
15 | ″ | ″ | sg:pub.10.1038/351367a0 |
16 | ″ | schema:datePublished | 1994-07 |
17 | ″ | schema:datePublishedReg | 1994-07-01 |
18 | ″ | schema:description | Four time-dependent greenhouse warming experiments were performed with the same global coupled atmosphere-ocean model, but with each simulation using initial conditions from different “snapshots” of the control run climate. The radiative forcing — the increase in equivalent CO2 concentrations from 1985–2035 specified in the Intergovernmental Panel on Climate Change (IPCC) scenario A — was identical in all four 50-year integrations. This approach to climate change experiments is called the Monte Carlo technique and is analogous to a similar experimental set-up used in the field of extended range weather forecasting. Despite the limitation of a very small sample size, this approach enables the estimation of both a mean response and the “between-experiment” variability, information which is not available from a single integration. The use of multiple realizations provides insights into the stability of the response, both spatially, seasonally and in terms of different climate variables. The results indicate that the time evolution of the global mean warming signal is strongly dependent on the initial state of the climate system. While the individual members of the ensemble show considerable variation in the pattern and amplitude of near-surface temperature change after 50 years, the ensemble mean climate change pattern closely resembles that obtained in a 100-year integration performed with the same model. In global mean terms, the climate change signals for near surface temperature, the hydrological cycle and sea level significantly exceed the variability among the members of the ensemble. Due to the high internal variability of the modelled climate system, the estimated detection time of the global mean temperature change signal is uncertain by at least one decade. While the ensemble mean surface temperature and sea level fields show regionally significant responses to greenhouse-gas forcing, it is not possible to identify a significant response in the precipitation and soil moisture fields, variables which are spatially noisy and characterized by large variability between the individual integrations. |
19 | ″ | schema:genre | article |
20 | ″ | schema:isAccessibleForFree | true |
21 | ″ | schema:isPartOf | Nb690a69a03564cd7923b747445ea2f25 |
22 | ″ | ″ | Ndb988e14f3684e40972987c538501a08 |
23 | ″ | ″ | sg:journal.1049631 |
24 | ″ | schema:keywords | CO2 concentration |
25 | ″ | ″ | Carlo technique |
26 | ″ | ″ | Intergovernmental Panel |
27 | ″ | ″ | Monte Carlo technique |
28 | ″ | ″ | amplitude |
29 | ″ | ″ | approach |
30 | ″ | ″ | atmosphere-ocean model |
31 | ″ | ″ | change experiments |
32 | ″ | ″ | change forecasts |
33 | ″ | ″ | change patterns |
34 | ″ | ″ | change signal |
35 | ″ | ″ | changes |
36 | ″ | ″ | climate |
37 | ″ | ″ | climate change forecasts |
38 | ″ | ″ | climate change patterns |
39 | ″ | ″ | climate change signal |
40 | ″ | ″ | climate system |
41 | ″ | ″ | climate variables |
42 | ″ | ″ | concentration |
43 | ″ | ″ | conditions |
44 | ″ | ″ | considerable variation |
45 | ″ | ″ | control |
46 | ″ | ″ | cycle |
47 | ″ | ″ | decades |
48 | ″ | ″ | detection time |
49 | ″ | ″ | different climate variables |
50 | ″ | ″ | ensemble |
51 | ″ | ″ | equivalent CO2 concentrations |
52 | ″ | ″ | estimation |
53 | ″ | ″ | evolution |
54 | ″ | ″ | experiments |
55 | ″ | ″ | extended-range weather forecasting |
56 | ″ | ″ | field |
57 | ″ | ″ | forcing |
58 | ″ | ″ | forecasting |
59 | ″ | ″ | forecasts |
60 | ″ | ″ | greenhouse gas forcing |
61 | ″ | ″ | greenhouse warming experiment |
62 | ″ | ″ | high internal variability |
63 | ″ | ″ | hydrological cycle |
64 | ″ | ″ | increase |
65 | ″ | ″ | individual integration |
66 | ″ | ″ | individual members |
67 | ″ | ″ | information |
68 | ″ | ″ | initial conditions |
69 | ″ | ″ | initial state |
70 | ″ | ″ | insights |
71 | ″ | ″ | integration |
72 | ″ | ″ | internal variability |
73 | ″ | ″ | large variability |
74 | ″ | ″ | level fields |
75 | ″ | ″ | levels |
76 | ″ | ″ | limitations |
77 | ″ | ″ | mean response |
78 | ″ | ″ | mean surface temperature |
79 | ″ | ″ | mean term |
80 | ″ | ″ | members |
81 | ″ | ″ | model |
82 | ″ | ″ | moisture fields |
83 | ″ | ″ | multiple realizations |
84 | ″ | ″ | near-surface temperature |
85 | ″ | ″ | near-surface temperature changes |
86 | ″ | ″ | ocean-atmosphere model |
87 | ″ | ″ | panel |
88 | ″ | ″ | patterns |
89 | ″ | ″ | precipitation |
90 | ″ | ″ | realization |
91 | ″ | ″ | response |
92 | ″ | ″ | results |
93 | ″ | ″ | same model |
94 | ″ | ″ | sample size |
95 | ″ | ″ | scenario A |
96 | ″ | ″ | sea level |
97 | ″ | ″ | sea level fields |
98 | ″ | ″ | signals |
99 | ″ | ″ | significant response |
100 | ″ | ″ | simulations |
101 | ″ | ″ | single integration |
102 | ″ | ″ | size |
103 | ″ | ″ | small sample size |
104 | ″ | ″ | snapshot |
105 | ″ | ″ | soil moisture fields |
106 | ″ | ″ | stability |
107 | ″ | ″ | state |
108 | ″ | ″ | surface temperature |
109 | ″ | ″ | system |
110 | ″ | ″ | technique |
111 | ″ | ″ | temperature |
112 | ″ | ″ | temperature change signals |
113 | ″ | ″ | temperature changes |
114 | ″ | ″ | terms |
115 | ″ | ″ | time |
116 | ″ | ″ | time evolution |
117 | ″ | ″ | use |
118 | ″ | ″ | variability |
119 | ″ | ″ | variables |
120 | ″ | ″ | variation |
121 | ″ | ″ | warming experiment |
122 | ″ | ″ | warming signal |
123 | ″ | ″ | weather forecasting |
124 | ″ | ″ | years |
125 | ″ | schema:name | Monte Carlo climate change forecasts with a global coupled ocean-atmosphere model |
126 | ″ | schema:pagination | 1-19 |
127 | ″ | schema:productId | N840c5f4c2bb944c9957e95c0d72fb567 |
128 | ″ | ″ | Nd338eb2b49754dfbb261c57bc6a7adc0 |
129 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1010636493 |
130 | ″ | ″ | https://doi.org/10.1007/bf00210333 |
131 | ″ | schema:sdDatePublished | 2022-08-04T16:51 |
132 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
133 | ″ | schema:sdPublisher | Nc9b7efa8619945118953a7314321bc29 |
134 | ″ | schema:url | https://doi.org/10.1007/bf00210333 |
135 | ″ | sgo:license | sg:explorer/license/ |
136 | ″ | sgo:sdDataset | articles |
137 | ″ | rdf:type | schema:ScholarlyArticle |
138 | N24e84611428746d0ab744abc3d5ea37c | rdf:first | sg:person.01207007331.96 |
139 | ″ | rdf:rest | N2dbe948e222246aa9e63c42f79113848 |
140 | N2dbe948e222246aa9e63c42f79113848 | rdf:first | sg:person.01234767320.60 |
141 | ″ | rdf:rest | Naefe264c38a14ef8a4d963e2d44bdd2b |
142 | N3ad3df1ff9f74321900515af74981e66 | rdf:first | sg:person.0624607120.80 |
143 | ″ | rdf:rest | N672e16feaaf142b3a26d42f82a0ae02e |
144 | N4733511d498740cda992049a230dfc54 | rdf:first | sg:person.014244276466.52 |
145 | ″ | rdf:rest | rdf:nil |
146 | N672e16feaaf142b3a26d42f82a0ae02e | rdf:first | sg:person.013102572147.42 |
147 | ″ | rdf:rest | N6dc1fb5364cf4b288f1aa4937c2c4035 |
148 | N69c8084585f645e3b752596dae67cf1e | rdf:first | sg:person.07735453701.56 |
149 | ″ | rdf:rest | N9284ec8c4cdf42c583c21b3c5bab7971 |
150 | N6dc1fb5364cf4b288f1aa4937c2c4035 | rdf:first | sg:person.014145550405.00 |
151 | ″ | rdf:rest | N69c8084585f645e3b752596dae67cf1e |
152 | N840c5f4c2bb944c9957e95c0d72fb567 | schema:name | dimensions_id |
153 | ″ | schema:value | pub.1010636493 |
154 | ″ | rdf:type | schema:PropertyValue |
155 | N9284ec8c4cdf42c583c21b3c5bab7971 | rdf:first | sg:person.011245345121.13 |
156 | ″ | rdf:rest | N4733511d498740cda992049a230dfc54 |
157 | Naefe264c38a14ef8a4d963e2d44bdd2b | rdf:first | sg:person.013626620453.62 |
158 | ″ | rdf:rest | N3ad3df1ff9f74321900515af74981e66 |
159 | Nb690a69a03564cd7923b747445ea2f25 | schema:volumeNumber | 10 |
160 | ″ | rdf:type | schema:PublicationVolume |
161 | Nc9b7efa8619945118953a7314321bc29 | schema:name | Springer Nature - SN SciGraph project |
162 | ″ | rdf:type | schema:Organization |
163 | Nd338eb2b49754dfbb261c57bc6a7adc0 | schema:name | doi |
164 | ″ | schema:value | 10.1007/bf00210333 |
165 | ″ | rdf:type | schema:PropertyValue |
166 | Ndb988e14f3684e40972987c538501a08 | schema:issueNumber | 1-2 |
167 | ″ | rdf:type | schema:PublicationIssue |
168 | anzsrc-for:04 | schema:inDefinedTermSet | anzsrc-for: |
169 | ″ | schema:name | Earth Sciences |
170 | ″ | rdf:type | schema:DefinedTerm |
171 | anzsrc-for:0401 | schema:inDefinedTermSet | anzsrc-for: |
172 | ″ | schema:name | Atmospheric Sciences |
173 | ″ | rdf:type | schema:DefinedTerm |
174 | anzsrc-for:0405 | schema:inDefinedTermSet | anzsrc-for: |
175 | ″ | schema:name | Oceanography |
176 | ″ | rdf:type | schema:DefinedTerm |
177 | anzsrc-for:0406 | schema:inDefinedTermSet | anzsrc-for: |
178 | ″ | schema:name | Physical Geography and Environmental Geoscience |
179 | ″ | rdf:type | schema:DefinedTerm |
180 | sg:journal.1049631 | schema:issn | 0930-7575 |
181 | ″ | ″ | 1432-0894 |
182 | ″ | schema:name | Climate Dynamics |
183 | ″ | schema:publisher | Springer Nature |
184 | ″ | rdf:type | schema:Periodical |
185 | sg:person.011245345121.13 | schema:affiliation | grid-institutes:grid.450268.d |
186 | ″ | schema:familyName | Stössel |
187 | ″ | schema:givenName | A. |
188 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011245345121.13 |
189 | ″ | rdf:type | schema:Person |
190 | sg:person.01207007331.96 | schema:affiliation | grid-institutes:grid.424215.4 |
191 | ″ | schema:familyName | Cubasch |
192 | ″ | schema:givenName | U. |
193 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207007331.96 |
194 | ″ | rdf:type | schema:Person |
195 | sg:person.01234767320.60 | schema:affiliation | grid-institutes:grid.250008.f |
196 | ″ | schema:familyName | Santer |
197 | ″ | schema:givenName | B. D. |
198 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234767320.60 |
199 | ″ | rdf:type | schema:Person |
200 | sg:person.013102572147.42 | schema:affiliation | grid-institutes:grid.450268.d |
201 | ″ | schema:familyName | Höck |
202 | ″ | schema:givenName | H. |
203 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013102572147.42 |
204 | ″ | rdf:type | schema:Person |
205 | sg:person.013626620453.62 | schema:affiliation | grid-institutes:grid.424215.4 |
206 | ″ | schema:familyName | Hellbach |
207 | ″ | schema:givenName | A. |
208 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013626620453.62 |
209 | ″ | rdf:type | schema:Person |
210 | sg:person.014145550405.00 | schema:affiliation | grid-institutes:grid.450268.d |
211 | ″ | schema:familyName | Maier-Reimer |
212 | ″ | schema:givenName | E. |
213 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014145550405.00 |
214 | ″ | rdf:type | schema:Person |
215 | sg:person.014244276466.52 | schema:affiliation | grid-institutes:grid.9026.d |
216 | ″ | schema:familyName | Voss |
217 | ″ | schema:givenName | R. |
218 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014244276466.52 |
219 | ″ | rdf:type | schema:Person |
220 | sg:person.0624607120.80 | schema:affiliation | grid-institutes:grid.450268.d |
221 | ″ | schema:familyName | Hegerl |
222 | ″ | schema:givenName | G. |
223 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624607120.80 |
224 | ″ | rdf:type | schema:Person |
225 | sg:person.07735453701.56 | schema:affiliation | grid-institutes:grid.450268.d |
226 | ″ | schema:familyName | Mikolajewicz |
227 | ″ | schema:givenName | U. |
228 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07735453701.56 |
229 | ″ | rdf:type | schema:Person |
230 | sg:pub.10.1007/bf00204743 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1023450325 |
231 | ″ | ″ | https://doi.org/10.1007/bf00204743 |
232 | ″ | rdf:type | schema:CreativeWork |
233 | sg:pub.10.1007/bf00207397 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040327896 |
234 | ″ | ″ | https://doi.org/10.1007/bf00207397 |
235 | ″ | rdf:type | schema:CreativeWork |
236 | sg:pub.10.1007/bf00209163 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1030448021 |
237 | ″ | ″ | https://doi.org/10.1007/bf00209163 |
238 | ″ | rdf:type | schema:CreativeWork |
239 | sg:pub.10.1007/bf00209518 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1011193616 |
240 | ″ | ″ | https://doi.org/10.1007/bf00209518 |
241 | ″ | rdf:type | schema:CreativeWork |
242 | sg:pub.10.1007/bf00210008 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1012875011 |
243 | ″ | ″ | https://doi.org/10.1007/bf00210008 |
244 | ″ | rdf:type | schema:CreativeWork |
245 | sg:pub.10.1007/bf01053472 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1027938902 |
246 | ″ | ″ | https://doi.org/10.1007/bf01053472 |
247 | ″ | rdf:type | schema:CreativeWork |
248 | sg:pub.10.1038/342660a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1042981833 |
249 | ″ | ″ | https://doi.org/10.1038/342660a0 |
250 | ″ | rdf:type | schema:CreativeWork |
251 | sg:pub.10.1038/344324a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1000092146 |
252 | ″ | ″ | https://doi.org/10.1038/344324a0 |
253 | ″ | rdf:type | schema:CreativeWork |
254 | sg:pub.10.1038/345589a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1013251505 |
255 | ″ | ″ | https://doi.org/10.1038/345589a0 |
256 | ″ | rdf:type | schema:CreativeWork |
257 | sg:pub.10.1038/351367a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1041427648 |
258 | ″ | ″ | https://doi.org/10.1038/351367a0 |
259 | ″ | rdf:type | schema:CreativeWork |
260 | grid-institutes:grid.250008.f | schema:alternateName | Lawrence Livermore National Laboratory, Program for Climate Model Diagnosis and Intercomparison, 94550, Livermore, Ca., USA |
261 | ″ | schema:name | Lawrence Livermore National Laboratory, Program for Climate Model Diagnosis and Intercomparison, 94550, Livermore, Ca., USA |
262 | ″ | rdf:type | schema:Organization |
263 | grid-institutes:grid.424215.4 | schema:alternateName | Deutsches Klimarechenzentrum, Bundesstr. 55, D-20146, Hamburg, Germany |
264 | ″ | schema:name | Deutsches Klimarechenzentrum, Bundesstr. 55, D-20146, Hamburg, Germany |
265 | ″ | rdf:type | schema:Organization |
266 | grid-institutes:grid.450268.d | schema:alternateName | Max-Planck-Institut für Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany |
267 | ″ | schema:name | Max-Planck-Institut für Meteorologie, Bundesstr. 55, D-20146, Hamburg, Germany |
268 | ″ | rdf:type | schema:Organization |
269 | grid-institutes:grid.9026.d | schema:alternateName | Meteorologisches Institut der Universität Hamburg, Bundesstr. 55, D-20146, Hamburg, Germany |
270 | ″ | schema:name | Meteorologisches Institut der Universität Hamburg, Bundesstr. 55, D-20146, Hamburg, Germany |
271 | ″ | rdf:type | schema:Organization |