Model of neural visual system with self-organizing cells View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1989-01

AUTHORS

K. Nakano, M. Niizuma, T. Omori

ABSTRACT

This paper describes a model of a neural visual system of a higher animal, in which the capability of pattern recognition develops adaptively. To produce the adaptability, we adopted “self-organizing cells,” and with them modeled feature-detecting cells which were discovered by Hubel and Wiesel and whose plasticity was found by Blakemore and Cooper. Combining the “self-organizing cells” and the learning principle of a Perceptron-type system, we constructed a model of the whole visual system. The model is also equipped with an eye movement control mechanism for gazing, which reduces the number of “selforganizing cells” required for pattern recognition, thus contributing to their quick self-organization. Computer simulation and an experiment using a hardware simulator showed that “self-organizing cells” quickly become sensitive to the features often seen and that the resulted system can classify patterns with a rather small number of feature-detecting cells. More... »

PAGES

195-202

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00207287

DOI

http://dx.doi.org/10.1007/bf00207287

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011048781

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/2923924


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Eye Movements", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Neurological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Visual Pathways", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Engineering and Information Physics, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Mathematical Engineering and Information Physics, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakano", 
        "givenName": "K.", 
        "id": "sg:person.016104607175.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016104607175.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Engineering and Information Physics, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Mathematical Engineering and Information Physics, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Niizuma", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electronic Engineering, Faculty of Technology, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, 183, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136594.c", 
          "name": [
            "Department of Electronic Engineering, Faculty of Technology, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, 183, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Omori", 
        "givenName": "T.", 
        "id": "sg:person.01263557346.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263557346.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00342633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042379868", 
          "https://doi.org/10.1007/bf00342633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-7566-5_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035964897", 
          "https://doi.org/10.1007/978-1-4615-7566-5_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/228477a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011281581", 
          "https://doi.org/10.1038/228477a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00288907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020503948", 
          "https://doi.org/10.1007/bf00288907"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1989-01", 
    "datePublishedReg": "1989-01-01", 
    "description": "This paper describes a model of a neural visual system of a higher animal, in which the capability of pattern recognition develops adaptively. To produce the adaptability, we adopted \u201cself-organizing cells,\u201d and with them modeled feature-detecting cells which were discovered by Hubel and Wiesel and whose plasticity was found by Blakemore and Cooper. Combining the \u201cself-organizing cells\u201d and the learning principle of a Perceptron-type system, we constructed a model of the whole visual system. The model is also equipped with an eye movement control mechanism for gazing, which reduces the number of \u201cselforganizing cells\u201d required for pattern recognition, thus contributing to their quick self-organization. Computer simulation and an experiment using a hardware simulator showed that \u201cself-organizing cells\u201d quickly become sensitive to the features often seen and that the resulted system can classify patterns with a rather small number of feature-detecting cells.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00207287", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1081741", 
        "issn": [
          "0340-1200", 
          "1432-0770"
        ], 
        "name": "Biological Cybernetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "60"
      }
    ], 
    "keywords": [
      "feature-detecting cells", 
      "pattern recognition", 
      "neural visual system", 
      "hardware simulator", 
      "visual system", 
      "whole visual system", 
      "self-organizing cells", 
      "movement control mechanisms", 
      "resulted system", 
      "control mechanisms", 
      "computer simulation", 
      "cells", 
      "recognition", 
      "system", 
      "simulator", 
      "capability", 
      "adaptability", 
      "small number", 
      "Hubel", 
      "model", 
      "animals", 
      "Wiesel", 
      "simulations", 
      "features", 
      "higher animals", 
      "plasticity", 
      "number", 
      "gazing", 
      "mechanism", 
      "experiments", 
      "principles", 
      "patterns", 
      "Blakemore", 
      "Cooper", 
      "paper", 
      "Perceptron-type system", 
      "eye movement control mechanism"
    ], 
    "name": "Model of neural visual system with self-organizing cells", 
    "pagination": "195-202", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011048781"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00207287"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "2923924"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00207287", 
      "https://app.dimensions.ai/details/publication/pub.1011048781"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_186.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00207287"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00207287'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00207287'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00207287'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00207287'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      22 PREDICATES      73 URIs      61 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00207287 schema:about N3726733417144278bcc9e1894f57f8fd
2 N699e93d62c764708be108b446f04d3d1
3 N6e16daee436c4d3cb9b4700d36c40f97
4 N8a777d50f6cf48368bd2dba3b3d8c9d7
5 Nf026d21d11174d2391a61a35529f4361
6 anzsrc-for:08
7 anzsrc-for:0801
8 schema:author Nf7d98897183a47b09855ecdafa97430b
9 schema:citation sg:pub.10.1007/978-1-4615-7566-5_15
10 sg:pub.10.1007/bf00288907
11 sg:pub.10.1007/bf00342633
12 sg:pub.10.1038/228477a0
13 schema:datePublished 1989-01
14 schema:datePublishedReg 1989-01-01
15 schema:description This paper describes a model of a neural visual system of a higher animal, in which the capability of pattern recognition develops adaptively. To produce the adaptability, we adopted “self-organizing cells,” and with them modeled feature-detecting cells which were discovered by Hubel and Wiesel and whose plasticity was found by Blakemore and Cooper. Combining the “self-organizing cells” and the learning principle of a Perceptron-type system, we constructed a model of the whole visual system. The model is also equipped with an eye movement control mechanism for gazing, which reduces the number of “selforganizing cells” required for pattern recognition, thus contributing to their quick self-organization. Computer simulation and an experiment using a hardware simulator showed that “self-organizing cells” quickly become sensitive to the features often seen and that the resulted system can classify patterns with a rather small number of feature-detecting cells.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N98b9d98235b042e0b0629015b70fd046
20 Nfaeb6866fe9f45a4811c6c4bf8b785d8
21 sg:journal.1081741
22 schema:keywords Blakemore
23 Cooper
24 Hubel
25 Perceptron-type system
26 Wiesel
27 adaptability
28 animals
29 capability
30 cells
31 computer simulation
32 control mechanisms
33 experiments
34 eye movement control mechanism
35 feature-detecting cells
36 features
37 gazing
38 hardware simulator
39 higher animals
40 mechanism
41 model
42 movement control mechanisms
43 neural visual system
44 number
45 paper
46 pattern recognition
47 patterns
48 plasticity
49 principles
50 recognition
51 resulted system
52 self-organizing cells
53 simulations
54 simulator
55 small number
56 system
57 visual system
58 whole visual system
59 schema:name Model of neural visual system with self-organizing cells
60 schema:pagination 195-202
61 schema:productId N18075150b6474c0b899bffbe8a352143
62 N20c92bab80084e6cb78133d6fc51972e
63 N93e6ef8e14d544be804c23eb4084613e
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011048781
65 https://doi.org/10.1007/bf00207287
66 schema:sdDatePublished 2022-01-01T18:03
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N700fe49d57884ca9ad5e1bb3ac28043c
69 schema:url https://doi.org/10.1007/bf00207287
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N0ad317e9f8a84b4283752caeedd6f937 schema:affiliation grid-institutes:grid.26999.3d
74 schema:familyName Niizuma
75 schema:givenName M.
76 rdf:type schema:Person
77 N18075150b6474c0b899bffbe8a352143 schema:name dimensions_id
78 schema:value pub.1011048781
79 rdf:type schema:PropertyValue
80 N20c92bab80084e6cb78133d6fc51972e schema:name doi
81 schema:value 10.1007/bf00207287
82 rdf:type schema:PropertyValue
83 N3726733417144278bcc9e1894f57f8fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Humans
85 rdf:type schema:DefinedTerm
86 N4c6a3f178a1b40abae586a223714ec24 rdf:first sg:person.01263557346.07
87 rdf:rest rdf:nil
88 N699e93d62c764708be108b446f04d3d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Computer Simulation
90 rdf:type schema:DefinedTerm
91 N6e16daee436c4d3cb9b4700d36c40f97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Models, Neurological
93 rdf:type schema:DefinedTerm
94 N700fe49d57884ca9ad5e1bb3ac28043c schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 N8a777d50f6cf48368bd2dba3b3d8c9d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Eye Movements
98 rdf:type schema:DefinedTerm
99 N93e6ef8e14d544be804c23eb4084613e schema:name pubmed_id
100 schema:value 2923924
101 rdf:type schema:PropertyValue
102 N98b9d98235b042e0b0629015b70fd046 schema:issueNumber 3
103 rdf:type schema:PublicationIssue
104 Ncfff072ddaa245a78bdcc82a96f5db9a rdf:first N0ad317e9f8a84b4283752caeedd6f937
105 rdf:rest N4c6a3f178a1b40abae586a223714ec24
106 Nf026d21d11174d2391a61a35529f4361 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Visual Pathways
108 rdf:type schema:DefinedTerm
109 Nf7d98897183a47b09855ecdafa97430b rdf:first sg:person.016104607175.04
110 rdf:rest Ncfff072ddaa245a78bdcc82a96f5db9a
111 Nfaeb6866fe9f45a4811c6c4bf8b785d8 schema:volumeNumber 60
112 rdf:type schema:PublicationVolume
113 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
114 schema:name Information and Computing Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
117 schema:name Artificial Intelligence and Image Processing
118 rdf:type schema:DefinedTerm
119 sg:journal.1081741 schema:issn 0340-1200
120 1432-0770
121 schema:name Biological Cybernetics
122 schema:publisher Springer Nature
123 rdf:type schema:Periodical
124 sg:person.01263557346.07 schema:affiliation grid-institutes:grid.136594.c
125 schema:familyName Omori
126 schema:givenName T.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263557346.07
128 rdf:type schema:Person
129 sg:person.016104607175.04 schema:affiliation grid-institutes:grid.26999.3d
130 schema:familyName Nakano
131 schema:givenName K.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016104607175.04
133 rdf:type schema:Person
134 sg:pub.10.1007/978-1-4615-7566-5_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035964897
135 https://doi.org/10.1007/978-1-4615-7566-5_15
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/bf00288907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020503948
138 https://doi.org/10.1007/bf00288907
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/bf00342633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042379868
141 https://doi.org/10.1007/bf00342633
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/228477a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011281581
144 https://doi.org/10.1038/228477a0
145 rdf:type schema:CreativeWork
146 grid-institutes:grid.136594.c schema:alternateName Department of Electronic Engineering, Faculty of Technology, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, 183, Tokyo, Japan
147 schema:name Department of Electronic Engineering, Faculty of Technology, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, 183, Tokyo, Japan
148 rdf:type schema:Organization
149 grid-institutes:grid.26999.3d schema:alternateName Department of Mathematical Engineering and Information Physics, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113, Tokyo, Japan
150 schema:name Department of Mathematical Engineering and Information Physics, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113, Tokyo, Japan
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...