Chemical variability in francolites from Israeli phosphorite macrograins View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1982-03

AUTHORS

Shimshon Axelrod, Vera Rohrlich

ABSTRACT

The chemical composition (up to 7 elements) of francolite in 64 samples of Israeli phosphorites from 7 fields was determined. Samples comprising mainly skeletal macrograins contain, on the average, 1.5% less P2O5, than those with other types of macrograins (mostly pelletal). Average CO2 in the skeletal variety is 4%, against 3% elsewhere. There is a strong positive correlation between Na and CO2, and a strong negative one between Mg and P2O5. Of the principal components explaining more than 95% of the chemical variation, the first, which opposes phosphate to carbonate and to sodium, differentiates between types of macrograins; the second, based on calcium and sodium not coupled with carbonate, differentiates between phosphorite fields. This is clearly seen from the graph (Fig. 6) obtained by correspondence-factor analysis. The difference between skeletal and other magrograins could be due to origin or to diagenetic changes, which include “francolitisation” of carbonate hydroxyapatite. More... »

PAGES

1-16

References to SciGraph publications

  • 1975-02. Correspondence factor analysis: An outline of its method in MATHEMATICAL GEOSCIENCES
  • Journal

    TITLE

    Mineralium Deposita

    ISSUE

    1

    VOLUME

    17

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00206372

    DOI

    http://dx.doi.org/10.1007/bf00206372

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1007174968


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0402", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Geochemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Negev Phosphates, Ltd., Oron, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Axelrod", 
            "givenName": "Shimshon", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technion \u2013 Israel Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.6451.6", 
              "name": [
                "Geotechnical and Mineral Engineering Department Technion, Israel Institute of Technology, Haifa, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rohrlich", 
            "givenName": "Vera", 
            "id": "sg:person.014420644045.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014420644045.29"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02080630", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003812284", 
              "https://doi.org/10.1007/bf02080630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0009-2541(78)90008-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017750669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0009-2541(78)90008-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017750669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1144/gsjgs.137.6.0749", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029193106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0009-2541(78)90072-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053069641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0009-2541(78)90072-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053069641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00003086-197207000-00039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060156161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00003086-197207000-00039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060156161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00003086-197207000-00039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060156161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1306/212f76cb-2b24-11d7-8648000102c1865d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064927751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2113/gsecongeo.64.4.365", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068929984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2113/gsecongeo.66.3.451", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068930210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2113/gsecongeo.67.8.1193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068930400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2113/gsecongeo.74.2.285", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068931195"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1982-03", 
        "datePublishedReg": "1982-03-01", 
        "description": "The chemical composition (up to 7 elements) of francolite in 64 samples of Israeli phosphorites from 7 fields was determined. Samples comprising mainly skeletal macrograins contain, on the average, 1.5% less P2O5, than those with other types of macrograins (mostly pelletal). Average CO2 in the skeletal variety is 4%, against 3% elsewhere. There is a strong positive correlation between Na and CO2, and a strong negative one between Mg and P2O5. Of the principal components explaining more than 95% of the chemical variation, the first, which opposes phosphate to carbonate and to sodium, differentiates between types of macrograins; the second, based on calcium and sodium not coupled with carbonate, differentiates between phosphorite fields. This is clearly seen from the graph (Fig. 6) obtained by correspondence-factor analysis. The difference between skeletal and other magrograins could be due to origin or to diagenetic changes, which include \u201cfrancolitisation\u201d of carbonate hydroxyapatite.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf00206372", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136236", 
            "issn": [
              "0026-4598", 
              "1432-1866"
            ], 
            "name": "Mineralium Deposita", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "17"
          }
        ], 
        "name": "Chemical variability in francolites from Israeli phosphorite macrograins", 
        "pagination": "1-16", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "222d1c08d99afbc2976378fdfcdaaaab3560fd4bed3f0ecfed7ede8b8a0d7726"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00206372"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1007174968"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00206372", 
          "https://app.dimensions.ai/details/publication/pub.1007174968"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:49", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130794_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF00206372"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00206372'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00206372'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00206372'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00206372'


     

    This table displays all metadata directly associated to this object as RDF triples.

    100 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00206372 schema:about anzsrc-for:04
    2 anzsrc-for:0402
    3 schema:author Nb34b8d31fb23412293e50b363f10f5e6
    4 schema:citation sg:pub.10.1007/bf02080630
    5 https://doi.org/10.1016/0009-2541(78)90008-6
    6 https://doi.org/10.1016/0009-2541(78)90072-4
    7 https://doi.org/10.1097/00003086-197207000-00039
    8 https://doi.org/10.1144/gsjgs.137.6.0749
    9 https://doi.org/10.1306/212f76cb-2b24-11d7-8648000102c1865d
    10 https://doi.org/10.2113/gsecongeo.64.4.365
    11 https://doi.org/10.2113/gsecongeo.66.3.451
    12 https://doi.org/10.2113/gsecongeo.67.8.1193
    13 https://doi.org/10.2113/gsecongeo.74.2.285
    14 schema:datePublished 1982-03
    15 schema:datePublishedReg 1982-03-01
    16 schema:description The chemical composition (up to 7 elements) of francolite in 64 samples of Israeli phosphorites from 7 fields was determined. Samples comprising mainly skeletal macrograins contain, on the average, 1.5% less P2O5, than those with other types of macrograins (mostly pelletal). Average CO2 in the skeletal variety is 4%, against 3% elsewhere. There is a strong positive correlation between Na and CO2, and a strong negative one between Mg and P2O5. Of the principal components explaining more than 95% of the chemical variation, the first, which opposes phosphate to carbonate and to sodium, differentiates between types of macrograins; the second, based on calcium and sodium not coupled with carbonate, differentiates between phosphorite fields. This is clearly seen from the graph (Fig. 6) obtained by correspondence-factor analysis. The difference between skeletal and other magrograins could be due to origin or to diagenetic changes, which include “francolitisation” of carbonate hydroxyapatite.
    17 schema:genre research_article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree false
    20 schema:isPartOf N5dae1c9e95ae49a4aa7a62ea8989fb0b
    21 Nc697f492fb2649c9b4a510a957a8fbd3
    22 sg:journal.1136236
    23 schema:name Chemical variability in francolites from Israeli phosphorite macrograins
    24 schema:pagination 1-16
    25 schema:productId N3c5a97888a23429f94fd788fcd8fcdfa
    26 N5033ae256bbb4fe88f748532cf44c9b0
    27 N9074ce257d034b0784ca6c93b659f65a
    28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007174968
    29 https://doi.org/10.1007/bf00206372
    30 schema:sdDatePublished 2019-04-11T13:49
    31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    32 schema:sdPublisher N57be54dfd36a4ab3a29c22e58668ab9c
    33 schema:url http://link.springer.com/10.1007/BF00206372
    34 sgo:license sg:explorer/license/
    35 sgo:sdDataset articles
    36 rdf:type schema:ScholarlyArticle
    37 N21d2234d79f14ede9c0111c4bc50188c rdf:first sg:person.014420644045.29
    38 rdf:rest rdf:nil
    39 N3c5a97888a23429f94fd788fcd8fcdfa schema:name dimensions_id
    40 schema:value pub.1007174968
    41 rdf:type schema:PropertyValue
    42 N47d1235193af4a8abc599715e74c035f schema:affiliation N752a281c6eb648768119fb1946894f87
    43 schema:familyName Axelrod
    44 schema:givenName Shimshon
    45 rdf:type schema:Person
    46 N5033ae256bbb4fe88f748532cf44c9b0 schema:name doi
    47 schema:value 10.1007/bf00206372
    48 rdf:type schema:PropertyValue
    49 N57be54dfd36a4ab3a29c22e58668ab9c schema:name Springer Nature - SN SciGraph project
    50 rdf:type schema:Organization
    51 N5dae1c9e95ae49a4aa7a62ea8989fb0b schema:issueNumber 1
    52 rdf:type schema:PublicationIssue
    53 N752a281c6eb648768119fb1946894f87 schema:name Negev Phosphates, Ltd., Oron, Israel
    54 rdf:type schema:Organization
    55 N9074ce257d034b0784ca6c93b659f65a schema:name readcube_id
    56 schema:value 222d1c08d99afbc2976378fdfcdaaaab3560fd4bed3f0ecfed7ede8b8a0d7726
    57 rdf:type schema:PropertyValue
    58 Nb34b8d31fb23412293e50b363f10f5e6 rdf:first N47d1235193af4a8abc599715e74c035f
    59 rdf:rest N21d2234d79f14ede9c0111c4bc50188c
    60 Nc697f492fb2649c9b4a510a957a8fbd3 schema:volumeNumber 17
    61 rdf:type schema:PublicationVolume
    62 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Earth Sciences
    64 rdf:type schema:DefinedTerm
    65 anzsrc-for:0402 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Geochemistry
    67 rdf:type schema:DefinedTerm
    68 sg:journal.1136236 schema:issn 0026-4598
    69 1432-1866
    70 schema:name Mineralium Deposita
    71 rdf:type schema:Periodical
    72 sg:person.014420644045.29 schema:affiliation https://www.grid.ac/institutes/grid.6451.6
    73 schema:familyName Rohrlich
    74 schema:givenName Vera
    75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014420644045.29
    76 rdf:type schema:Person
    77 sg:pub.10.1007/bf02080630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003812284
    78 https://doi.org/10.1007/bf02080630
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1016/0009-2541(78)90008-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017750669
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1016/0009-2541(78)90072-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053069641
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1097/00003086-197207000-00039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060156161
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1144/gsjgs.137.6.0749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029193106
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1306/212f76cb-2b24-11d7-8648000102c1865d schema:sameAs https://app.dimensions.ai/details/publication/pub.1064927751
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.2113/gsecongeo.64.4.365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068929984
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.2113/gsecongeo.66.3.451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068930210
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.2113/gsecongeo.67.8.1193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068930400
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.2113/gsecongeo.74.2.285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068931195
    97 rdf:type schema:CreativeWork
    98 https://www.grid.ac/institutes/grid.6451.6 schema:alternateName Technion – Israel Institute of Technology
    99 schema:name Geotechnical and Mineral Engineering Department Technion, Israel Institute of Technology, Haifa, Israel
    100 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...