Signal-to-noise analysis of time-dependent greenhouse warming experiments View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1994-03

AUTHORS

Benjamin D Santer, Wolfgang Brüggemann, Ulrich Cubasch, Klaus Hasselmann, Heinke Höck, Ernst Maier-Reimer, Uwe Mikolajewica

ABSTRACT

Results from a control integration and time-dependent greenhouse warming experiments performed with a coupled ocean-atmosphere model are analysed in terms of their signal-to-noise properties. The aim is to illustrate techniques for efficient description of the space-time evolution of signals and noise and to identify potentially useful components of a multivariate greenhouse-gas “fingerprint”. The three 100-year experiments analysed here simulate the response of the climate system to a step-function doubling of CO2 and to the time-dependent greenhouse-gas increases specified in Scenarios A (“Business as Usual”) and D (“Draconian Measures”) of the Intergovernmental Panel on Climate Change (IPCC). If signal and noise patterns are highly similar, the separation of the signal from the natural variability noise is difficult. We use the pattern correlation between the dominant Empirical Orthogonal Functions (EOFs) of the control run and the Scenario A experiment as a measure of the similarity of signal and noise patterns. The EOF 1 patterns of signal and noise are least similar for near-surface temperature and the vertical structure of zonal winds, and are most similar for sea level pressure (SLP). The dominant signal and noise modes of precipitable water and stratospheric/tropospheric temperature contrasts show considerable pattern similarity. Despite the differences in forcing history, a highly similar EOF 1 surface temperature response pattern is found in all three greenhouse warming experiments. A large part of this similarity is due to a common land-sea contrast component of the signal. To determine the degree to which the signal is contaminated by the natural variability (and/or drift) of the control run, we project the Scenario A data onto EOFs 1 and 2 of the control. Signal contamination by the EOF 1 and 2 modes of the noise is lowest for near-surface temperature, a situation favorable for detection. The signals for precipitable water, SLP, and the vertical structure of zonal temperature and zonal winds are significantly contaminated by the dominant noise modes. We use cumulative explained spatial variance, principal component time series, and projections onto EOFs in order to investigate the time evolution of the dominant signal and noise modes. In the case of near-surface temperature, a single pattern emerges as the dominant signal component in the second half of the Scenario A experiment. The projections onto EOFs 1 and 2 of the control run indicate that Scenario D has a large common variability and/or drift component with the control run. This common component is also apparent between years 30 and 50 of the Scenario A experiment, but is small in the 2 × CO2 integration. The trajectories of the dominant Scenario A and control run modes evolve differently, regardless of the basis vectors chosen for projection, thus making it feasible to separate signal and noise within the first two decades of the experiments. For Scenario D it may not be possible to discriminate between the dominant signal and noise modes until the final 2–3 decades of the 100-year integration. More... »

PAGES

267-285

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00204743

DOI

http://dx.doi.org/10.1007/bf00204743

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023450325


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Mail Stop L-264, P.O. Box 808, 94550, Livermore, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.250008.f", 
          "name": [
            "Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Mail Stop L-264, P.O. Box 808, 94550, Livermore, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Santer", 
        "givenName": "Benjamin D", 
        "id": "sg:person.01234767320.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234767320.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Meteorologic, Bundesstrasse 55, D-20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4372.2", 
          "name": [
            "Max-Planck-Institut f\u00fcr Meteorologic, Bundesstrasse 55, D-20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Br\u00fcggemann", 
        "givenName": "Wolfgang", 
        "id": "sg:person.0631452720.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631452720.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Deutsches Klimarechenzentrum, Bundesstrasse 55, D-20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.424215.4", 
          "name": [
            "Deutsches Klimarechenzentrum, Bundesstrasse 55, D-20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cubasch", 
        "givenName": "Ulrich", 
        "id": "sg:person.01207007331.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207007331.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Meteorologic, Bundesstrasse 55, D-20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4372.2", 
          "name": [
            "Max-Planck-Institut f\u00fcr Meteorologic, Bundesstrasse 55, D-20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hasselmann", 
        "givenName": "Klaus", 
        "id": "sg:person.011507631147.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011507631147.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Meteorologic, Bundesstrasse 55, D-20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4372.2", 
          "name": [
            "Max-Planck-Institut f\u00fcr Meteorologic, Bundesstrasse 55, D-20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00f6ck", 
        "givenName": "Heinke", 
        "id": "sg:person.013102572147.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013102572147.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Meteorologic, Bundesstrasse 55, D-20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4372.2", 
          "name": [
            "Max-Planck-Institut f\u00fcr Meteorologic, Bundesstrasse 55, D-20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maier-Reimer", 
        "givenName": "Ernst", 
        "id": "sg:person.014145550405.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014145550405.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Meteorologic, Bundesstrasse 55, D-20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4372.2", 
          "name": [
            "Max-Planck-Institut f\u00fcr Meteorologic, Bundesstrasse 55, D-20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mikolajewica", 
        "givenName": "Uwe", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00210008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012875011", 
          "https://doi.org/10.1007/bf00210008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01054491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040451933", 
          "https://doi.org/10.1007/bf01054491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/342660a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042981833", 
          "https://doi.org/10.1038/342660a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01053472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027938902", 
          "https://doi.org/10.1007/bf01053472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/292205a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031374754", 
          "https://doi.org/10.1038/292205a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00209518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011193616", 
          "https://doi.org/10.1007/bf00209518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00209666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004071925", 
          "https://doi.org/10.1007/bf00209666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00207397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040327896", 
          "https://doi.org/10.1007/bf00207397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00210333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010636493", 
          "https://doi.org/10.1007/bf00210333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00209163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030448021", 
          "https://doi.org/10.1007/bf00209163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/345589a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013251505", 
          "https://doi.org/10.1038/345589a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/342053a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041840741", 
          "https://doi.org/10.1038/342053a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-03", 
    "datePublishedReg": "1994-03-01", 
    "description": "Results from a control integration and time-dependent greenhouse warming experiments performed with a coupled ocean-atmosphere model are analysed in terms of their signal-to-noise properties. The aim is to illustrate techniques for efficient description of the space-time evolution of signals and noise and to identify potentially useful components of a multivariate greenhouse-gas \u201cfingerprint\u201d. The three 100-year experiments analysed here simulate the response of the climate system to a step-function doubling of CO2 and to the time-dependent greenhouse-gas increases specified in Scenarios A (\u201cBusiness as Usual\u201d) and D (\u201cDraconian Measures\u201d) of the Intergovernmental Panel on Climate Change (IPCC). If signal and noise patterns are highly similar, the separation of the signal from the natural variability noise is difficult. We use the pattern correlation between the dominant Empirical Orthogonal Functions (EOFs) of the control run and the Scenario A experiment as a measure of the similarity of signal and noise patterns. The EOF 1 patterns of signal and noise are least similar for near-surface temperature and the vertical structure of zonal winds, and are most similar for sea level pressure (SLP). The dominant signal and noise modes of precipitable water and stratospheric/tropospheric temperature contrasts show considerable pattern similarity. Despite the differences in forcing history, a highly similar EOF 1 surface temperature response pattern is found in all three greenhouse warming experiments. A large part of this similarity is due to a common land-sea contrast component of the signal. To determine the degree to which the signal is contaminated by the natural variability (and/or drift) of the control run, we project the Scenario A data onto EOFs 1 and 2 of the control. Signal contamination by the EOF 1 and 2 modes of the noise is lowest for near-surface temperature, a situation favorable for detection. The signals for precipitable water, SLP, and the vertical structure of zonal temperature and zonal winds are significantly contaminated by the dominant noise modes. We use cumulative explained spatial variance, principal component time series, and projections onto EOFs in order to investigate the time evolution of the dominant signal and noise modes. In the case of near-surface temperature, a single pattern emerges as the dominant signal component in the second half of the Scenario A experiment. The projections onto EOFs 1 and 2 of the control run indicate that Scenario D has a large common variability and/or drift component with the control run. This common component is also apparent between years 30 and 50 of the Scenario A experiment, but is small in the 2 \u00d7 CO2 integration. The trajectories of the dominant Scenario A and control run modes evolve differently, regardless of the basis vectors chosen for projection, thus making it feasible to separate signal and noise within the first two decades of the experiments. For Scenario D it may not be possible to discriminate between the dominant signal and noise modes until the final 2\u20133 decades of the 100-year integration.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00204743", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "near-surface temperature", 
      "sea level pressure", 
      "empirical orthogonal functions", 
      "EOF-1", 
      "dominant signal", 
      "precipitable water", 
      "control run", 
      "zonal wind", 
      "vertical structure", 
      "principal component time series", 
      "dominant empirical orthogonal functions", 
      "ocean-atmosphere model", 
      "natural variability noise", 
      "greenhouse gas increases", 
      "greenhouse warming experiment", 
      "component time series", 
      "temperature response patterns", 
      "A experiments", 
      "climate system", 
      "level pressure", 
      "scenario A", 
      "temperature contrast", 
      "natural variability", 
      "control integration", 
      "Intergovernmental Panel", 
      "pattern correlation", 
      "CO2 integration", 
      "Scenario D", 
      "orthogonal functions", 
      "zonal temperatures", 
      "space-time evolution", 
      "climate change", 
      "warming experiment", 
      "dominant signal component", 
      "common variability", 
      "spatial variance", 
      "time series", 
      "similarity of signals", 
      "wind", 
      "noise modes", 
      "variability", 
      "large part", 
      "year 30", 
      "water", 
      "A data", 
      "projections", 
      "evolution", 
      "signal contamination", 
      "second half", 
      "efficient description", 
      "noise patterns", 
      "time evolution", 
      "temperature", 
      "patterns", 
      "CO2", 
      "common component", 
      "drift component", 
      "useful component", 
      "contamination", 
      "run", 
      "run mode", 
      "decades", 
      "pattern similarity", 
      "components", 
      "doubling", 
      "similarity", 
      "scenarios", 
      "fingerprints", 
      "part", 
      "history", 
      "signals", 
      "changes", 
      "response patterns", 
      "greenhouse", 
      "data", 
      "experiments", 
      "series", 
      "correlation", 
      "mode", 
      "model", 
      "structure", 
      "contrast", 
      "trajectories", 
      "half", 
      "increase", 
      "contrast components", 
      "variance", 
      "pressure", 
      "integration", 
      "noise analysis", 
      "analysis", 
      "order", 
      "degree", 
      "description", 
      "results", 
      "multivariate", 
      "system", 
      "noise", 
      "signal components", 
      "differences", 
      "response", 
      "single pattern", 
      "terms", 
      "separation", 
      "control", 
      "technique", 
      "properties", 
      "situation", 
      "measures", 
      "panel", 
      "cases", 
      "vector", 
      "detection", 
      "function", 
      "aim", 
      "noise properties", 
      "basis vectors"
    ], 
    "name": "Signal-to-noise analysis of time-dependent greenhouse warming experiments", 
    "pagination": "267-285", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023450325"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00204743"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00204743", 
      "https://app.dimensions.ai/details/publication/pub.1023450325"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_242.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00204743"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00204743'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00204743'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00204743'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00204743'


 

This table displays all metadata directly associated to this object as RDF triples.

277 TRIPLES      21 PREDICATES      156 URIs      134 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00204743 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 anzsrc-for:0405
4 anzsrc-for:0406
5 schema:author Nc5827eb80fb54155a0ecc8ce959f89d7
6 schema:citation sg:pub.10.1007/bf00207397
7 sg:pub.10.1007/bf00209163
8 sg:pub.10.1007/bf00209518
9 sg:pub.10.1007/bf00209666
10 sg:pub.10.1007/bf00210008
11 sg:pub.10.1007/bf00210333
12 sg:pub.10.1007/bf01053472
13 sg:pub.10.1007/bf01054491
14 sg:pub.10.1038/292205a0
15 sg:pub.10.1038/342053a0
16 sg:pub.10.1038/342660a0
17 sg:pub.10.1038/345589a0
18 schema:datePublished 1994-03
19 schema:datePublishedReg 1994-03-01
20 schema:description Results from a control integration and time-dependent greenhouse warming experiments performed with a coupled ocean-atmosphere model are analysed in terms of their signal-to-noise properties. The aim is to illustrate techniques for efficient description of the space-time evolution of signals and noise and to identify potentially useful components of a multivariate greenhouse-gas “fingerprint”. The three 100-year experiments analysed here simulate the response of the climate system to a step-function doubling of CO2 and to the time-dependent greenhouse-gas increases specified in Scenarios A (“Business as Usual”) and D (“Draconian Measures”) of the Intergovernmental Panel on Climate Change (IPCC). If signal and noise patterns are highly similar, the separation of the signal from the natural variability noise is difficult. We use the pattern correlation between the dominant Empirical Orthogonal Functions (EOFs) of the control run and the Scenario A experiment as a measure of the similarity of signal and noise patterns. The EOF 1 patterns of signal and noise are least similar for near-surface temperature and the vertical structure of zonal winds, and are most similar for sea level pressure (SLP). The dominant signal and noise modes of precipitable water and stratospheric/tropospheric temperature contrasts show considerable pattern similarity. Despite the differences in forcing history, a highly similar EOF 1 surface temperature response pattern is found in all three greenhouse warming experiments. A large part of this similarity is due to a common land-sea contrast component of the signal. To determine the degree to which the signal is contaminated by the natural variability (and/or drift) of the control run, we project the Scenario A data onto EOFs 1 and 2 of the control. Signal contamination by the EOF 1 and 2 modes of the noise is lowest for near-surface temperature, a situation favorable for detection. The signals for precipitable water, SLP, and the vertical structure of zonal temperature and zonal winds are significantly contaminated by the dominant noise modes. We use cumulative explained spatial variance, principal component time series, and projections onto EOFs in order to investigate the time evolution of the dominant signal and noise modes. In the case of near-surface temperature, a single pattern emerges as the dominant signal component in the second half of the Scenario A experiment. The projections onto EOFs 1 and 2 of the control run indicate that Scenario D has a large common variability and/or drift component with the control run. This common component is also apparent between years 30 and 50 of the Scenario A experiment, but is small in the 2 × CO2 integration. The trajectories of the dominant Scenario A and control run modes evolve differently, regardless of the basis vectors chosen for projection, thus making it feasible to separate signal and noise within the first two decades of the experiments. For Scenario D it may not be possible to discriminate between the dominant signal and noise modes until the final 2–3 decades of the 100-year integration.
21 schema:genre article
22 schema:isAccessibleForFree true
23 schema:isPartOf N87ab6064846241d38b96c1b8f7786ebf
24 Nc08b00bcc0dd4d5583c16c85addfde27
25 sg:journal.1049631
26 schema:keywords A data
27 A experiments
28 CO2
29 CO2 integration
30 EOF-1
31 Intergovernmental Panel
32 Scenario D
33 aim
34 analysis
35 basis vectors
36 cases
37 changes
38 climate change
39 climate system
40 common component
41 common variability
42 component time series
43 components
44 contamination
45 contrast
46 contrast components
47 control
48 control integration
49 control run
50 correlation
51 data
52 decades
53 degree
54 description
55 detection
56 differences
57 dominant empirical orthogonal functions
58 dominant signal
59 dominant signal component
60 doubling
61 drift component
62 efficient description
63 empirical orthogonal functions
64 evolution
65 experiments
66 fingerprints
67 function
68 greenhouse
69 greenhouse gas increases
70 greenhouse warming experiment
71 half
72 history
73 increase
74 integration
75 large part
76 level pressure
77 measures
78 mode
79 model
80 multivariate
81 natural variability
82 natural variability noise
83 near-surface temperature
84 noise
85 noise analysis
86 noise modes
87 noise patterns
88 noise properties
89 ocean-atmosphere model
90 order
91 orthogonal functions
92 panel
93 part
94 pattern correlation
95 pattern similarity
96 patterns
97 precipitable water
98 pressure
99 principal component time series
100 projections
101 properties
102 response
103 response patterns
104 results
105 run
106 run mode
107 scenario A
108 scenarios
109 sea level pressure
110 second half
111 separation
112 series
113 signal components
114 signal contamination
115 signals
116 similarity
117 similarity of signals
118 single pattern
119 situation
120 space-time evolution
121 spatial variance
122 structure
123 system
124 technique
125 temperature
126 temperature contrast
127 temperature response patterns
128 terms
129 time evolution
130 time series
131 trajectories
132 useful component
133 variability
134 variance
135 vector
136 vertical structure
137 warming experiment
138 water
139 wind
140 year 30
141 zonal temperatures
142 zonal wind
143 schema:name Signal-to-noise analysis of time-dependent greenhouse warming experiments
144 schema:pagination 267-285
145 schema:productId N445d86b834c345218c2bacf63ecc625e
146 Na0a731146e6a4a3f84a323821f7842c0
147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023450325
148 https://doi.org/10.1007/bf00204743
149 schema:sdDatePublished 2022-12-01T06:20
150 schema:sdLicense https://scigraph.springernature.com/explorer/license/
151 schema:sdPublisher Nc6d4b1d09f74471f88613aa690831f2a
152 schema:url https://doi.org/10.1007/bf00204743
153 sgo:license sg:explorer/license/
154 sgo:sdDataset articles
155 rdf:type schema:ScholarlyArticle
156 N203d44fa2c5541718de1cbb19f44de09 rdf:first sg:person.01207007331.96
157 rdf:rest N23a727d9cb1b444eb752047ebbfe5dcd
158 N23a727d9cb1b444eb752047ebbfe5dcd rdf:first sg:person.011507631147.31
159 rdf:rest Nb565e5db45474a939f4ec0664098270f
160 N321a0abf59244c4cacf81d264bcce889 rdf:first sg:person.014145550405.00
161 rdf:rest N4fc9d000e4a6497ab804308e5d1b972a
162 N445d86b834c345218c2bacf63ecc625e schema:name doi
163 schema:value 10.1007/bf00204743
164 rdf:type schema:PropertyValue
165 N4fc9d000e4a6497ab804308e5d1b972a rdf:first N80d01fc81c9a4540ac915a943c76a405
166 rdf:rest rdf:nil
167 N80d01fc81c9a4540ac915a943c76a405 schema:affiliation grid-institutes:grid.4372.2
168 schema:familyName Mikolajewica
169 schema:givenName Uwe
170 rdf:type schema:Person
171 N847e4cea5df0404985f1ecda4c8d1486 rdf:first sg:person.0631452720.13
172 rdf:rest N203d44fa2c5541718de1cbb19f44de09
173 N87ab6064846241d38b96c1b8f7786ebf schema:volumeNumber 9
174 rdf:type schema:PublicationVolume
175 Na0a731146e6a4a3f84a323821f7842c0 schema:name dimensions_id
176 schema:value pub.1023450325
177 rdf:type schema:PropertyValue
178 Nb565e5db45474a939f4ec0664098270f rdf:first sg:person.013102572147.42
179 rdf:rest N321a0abf59244c4cacf81d264bcce889
180 Nc08b00bcc0dd4d5583c16c85addfde27 schema:issueNumber 6
181 rdf:type schema:PublicationIssue
182 Nc5827eb80fb54155a0ecc8ce959f89d7 rdf:first sg:person.01234767320.60
183 rdf:rest N847e4cea5df0404985f1ecda4c8d1486
184 Nc6d4b1d09f74471f88613aa690831f2a schema:name Springer Nature - SN SciGraph project
185 rdf:type schema:Organization
186 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
187 schema:name Earth Sciences
188 rdf:type schema:DefinedTerm
189 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
190 schema:name Atmospheric Sciences
191 rdf:type schema:DefinedTerm
192 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
193 schema:name Oceanography
194 rdf:type schema:DefinedTerm
195 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
196 schema:name Physical Geography and Environmental Geoscience
197 rdf:type schema:DefinedTerm
198 sg:journal.1049631 schema:issn 0930-7575
199 1432-0894
200 schema:name Climate Dynamics
201 schema:publisher Springer Nature
202 rdf:type schema:Periodical
203 sg:person.011507631147.31 schema:affiliation grid-institutes:grid.4372.2
204 schema:familyName Hasselmann
205 schema:givenName Klaus
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011507631147.31
207 rdf:type schema:Person
208 sg:person.01207007331.96 schema:affiliation grid-institutes:grid.424215.4
209 schema:familyName Cubasch
210 schema:givenName Ulrich
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207007331.96
212 rdf:type schema:Person
213 sg:person.01234767320.60 schema:affiliation grid-institutes:grid.250008.f
214 schema:familyName Santer
215 schema:givenName Benjamin D
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234767320.60
217 rdf:type schema:Person
218 sg:person.013102572147.42 schema:affiliation grid-institutes:grid.4372.2
219 schema:familyName Höck
220 schema:givenName Heinke
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013102572147.42
222 rdf:type schema:Person
223 sg:person.014145550405.00 schema:affiliation grid-institutes:grid.4372.2
224 schema:familyName Maier-Reimer
225 schema:givenName Ernst
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014145550405.00
227 rdf:type schema:Person
228 sg:person.0631452720.13 schema:affiliation grid-institutes:grid.4372.2
229 schema:familyName Brüggemann
230 schema:givenName Wolfgang
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631452720.13
232 rdf:type schema:Person
233 sg:pub.10.1007/bf00207397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040327896
234 https://doi.org/10.1007/bf00207397
235 rdf:type schema:CreativeWork
236 sg:pub.10.1007/bf00209163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030448021
237 https://doi.org/10.1007/bf00209163
238 rdf:type schema:CreativeWork
239 sg:pub.10.1007/bf00209518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011193616
240 https://doi.org/10.1007/bf00209518
241 rdf:type schema:CreativeWork
242 sg:pub.10.1007/bf00209666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004071925
243 https://doi.org/10.1007/bf00209666
244 rdf:type schema:CreativeWork
245 sg:pub.10.1007/bf00210008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012875011
246 https://doi.org/10.1007/bf00210008
247 rdf:type schema:CreativeWork
248 sg:pub.10.1007/bf00210333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010636493
249 https://doi.org/10.1007/bf00210333
250 rdf:type schema:CreativeWork
251 sg:pub.10.1007/bf01053472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027938902
252 https://doi.org/10.1007/bf01053472
253 rdf:type schema:CreativeWork
254 sg:pub.10.1007/bf01054491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040451933
255 https://doi.org/10.1007/bf01054491
256 rdf:type schema:CreativeWork
257 sg:pub.10.1038/292205a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031374754
258 https://doi.org/10.1038/292205a0
259 rdf:type schema:CreativeWork
260 sg:pub.10.1038/342053a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041840741
261 https://doi.org/10.1038/342053a0
262 rdf:type schema:CreativeWork
263 sg:pub.10.1038/342660a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042981833
264 https://doi.org/10.1038/342660a0
265 rdf:type schema:CreativeWork
266 sg:pub.10.1038/345589a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013251505
267 https://doi.org/10.1038/345589a0
268 rdf:type schema:CreativeWork
269 grid-institutes:grid.250008.f schema:alternateName Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Mail Stop L-264, P.O. Box 808, 94550, Livermore, CA, USA
270 schema:name Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Mail Stop L-264, P.O. Box 808, 94550, Livermore, CA, USA
271 rdf:type schema:Organization
272 grid-institutes:grid.424215.4 schema:alternateName Deutsches Klimarechenzentrum, Bundesstrasse 55, D-20146, Hamburg, Germany
273 schema:name Deutsches Klimarechenzentrum, Bundesstrasse 55, D-20146, Hamburg, Germany
274 rdf:type schema:Organization
275 grid-institutes:grid.4372.2 schema:alternateName Max-Planck-Institut für Meteorologic, Bundesstrasse 55, D-20146, Hamburg, Germany
276 schema:name Max-Planck-Institut für Meteorologic, Bundesstrasse 55, D-20146, Hamburg, Germany
277 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...