On the kinetic depth effect View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1989-04

AUTHORS

J. Aloimonos, C. M. Brown

ABSTRACT

The problem of the kinetic depth effect is revisited. We study how many points in how many views are necessary and sufficient to recover structure. The constraints in the cases where the velocities of the image points are known, and the positions of the image points are known with the correspondence between them established, are different and they have to be studied separately. In the case of two projections of any number of points there are infinitely many solutions, but if we regularize the problem we get a unique solution under some assumptions. Finally, an algorithm is discussed for learning this particular kind of regularization. More... »

PAGES

445-455

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00204700

DOI

http://dx.doi.org/10.1007/bf00204700

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041438957

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/2719982


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Depth Perception", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Motion Perception", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Visual Pathways", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computer Vision Laboratory, Center for Automation Research, University of Maryland, 20742-3411, College Park, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Computer Vision Laboratory, Center for Automation Research, University of Maryland, 20742-3411, College Park, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aloimonos", 
        "givenName": "J.", 
        "id": "sg:person.01204475774.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204475774.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Rochester, 14627, Rochester, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.16416.34", 
          "name": [
            "Department of Computer Science, University of Rochester, 14627, Rochester, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brown", 
        "givenName": "C. M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00340076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082128739", 
          "https://doi.org/10.1007/bf00340076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00335200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010939667", 
          "https://doi.org/10.1007/bf00335200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00336915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008695105", 
          "https://doi.org/10.1007/bf00336915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/293133a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039346861", 
          "https://doi.org/10.1038/293133a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5280-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028942010", 
          "https://doi.org/10.1007/978-1-4612-5280-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03212378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043716176", 
          "https://doi.org/10.3758/bf03212378"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1989-04", 
    "datePublishedReg": "1989-04-01", 
    "description": "The problem of the kinetic depth effect is revisited. We study how many points in how many views are necessary and sufficient to recover structure. The constraints in the cases where the velocities of the image points are known, and the positions of the image points are known with the correspondence between them established, are different and they have to be studied separately. In the case of two projections of any number of points there are infinitely many solutions, but if we regularize the problem we get a unique solution under some assumptions. Finally, an algorithm is discussed for learning this particular kind of regularization.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00204700", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1081741", 
        "issn": [
          "0340-1200", 
          "1432-0770"
        ], 
        "name": "Biological Cybernetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "60"
      }
    ], 
    "keywords": [
      "image points", 
      "number of points", 
      "kinetic depth effect", 
      "algorithm", 
      "constraints", 
      "solution", 
      "particular kind", 
      "regularization", 
      "point", 
      "view", 
      "correspondence", 
      "unique solution", 
      "kind", 
      "depth effect", 
      "projections", 
      "number", 
      "assumption", 
      "structure", 
      "cases", 
      "position", 
      "velocity", 
      "effect", 
      "problem"
    ], 
    "name": "On the kinetic depth effect", 
    "pagination": "445-455", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041438957"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00204700"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "2719982"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00204700", 
      "https://app.dimensions.ai/details/publication/pub.1041438957"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_187.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00204700"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00204700'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00204700'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00204700'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00204700'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      21 PREDICATES      60 URIs      46 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00204700 schema:about N02847e1938c44015b85875632e6acd96
2 N23485295966f4ea79a9cde1af5c392a8
3 N6e16df1eb7e54559a6e779bb5920fb55
4 N9f8b8896e4994ef48c02aefd2d88ac92
5 Ndfc4beccf70742cb875a5d9737a2c7d4
6 anzsrc-for:08
7 anzsrc-for:0801
8 schema:author Nc67316157d984ea48409abe553e72b28
9 schema:citation sg:pub.10.1007/978-1-4612-5280-1
10 sg:pub.10.1007/bf00335200
11 sg:pub.10.1007/bf00336915
12 sg:pub.10.1007/bf00340076
13 sg:pub.10.1038/293133a0
14 sg:pub.10.3758/bf03212378
15 schema:datePublished 1989-04
16 schema:datePublishedReg 1989-04-01
17 schema:description The problem of the kinetic depth effect is revisited. We study how many points in how many views are necessary and sufficient to recover structure. The constraints in the cases where the velocities of the image points are known, and the positions of the image points are known with the correspondence between them established, are different and they have to be studied separately. In the case of two projections of any number of points there are infinitely many solutions, but if we regularize the problem we get a unique solution under some assumptions. Finally, an algorithm is discussed for learning this particular kind of regularization.
18 schema:genre article
19 schema:isAccessibleForFree false
20 schema:isPartOf Ne42f17f3d05c48c4b4f4c713dc5225c2
21 Nec0f81aba3d54af3a7102c3ee58bcf86
22 sg:journal.1081741
23 schema:keywords algorithm
24 assumption
25 cases
26 constraints
27 correspondence
28 depth effect
29 effect
30 image points
31 kind
32 kinetic depth effect
33 number
34 number of points
35 particular kind
36 point
37 position
38 problem
39 projections
40 regularization
41 solution
42 structure
43 unique solution
44 velocity
45 view
46 schema:name On the kinetic depth effect
47 schema:pagination 445-455
48 schema:productId N1c95526ecbf94b24b13c0a44bbd2c8f7
49 N646a532f2468496c8cd9f22b335bb068
50 N892ecf46ab7e42228585dc1068bfb32b
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041438957
52 https://doi.org/10.1007/bf00204700
53 schema:sdDatePublished 2022-12-01T06:19
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N95480e3f89454214be0d18e1c1462768
56 schema:url https://doi.org/10.1007/bf00204700
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N02847e1938c44015b85875632e6acd96 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Models, Biological
62 rdf:type schema:DefinedTerm
63 N1c95526ecbf94b24b13c0a44bbd2c8f7 schema:name doi
64 schema:value 10.1007/bf00204700
65 rdf:type schema:PropertyValue
66 N23485295966f4ea79a9cde1af5c392a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Depth Perception
68 rdf:type schema:DefinedTerm
69 N3c7f786ee3f8464bb4fdc6cea4a408c4 rdf:first Nce52a2ce9eb54d80839f9012ad8697ab
70 rdf:rest rdf:nil
71 N646a532f2468496c8cd9f22b335bb068 schema:name pubmed_id
72 schema:value 2719982
73 rdf:type schema:PropertyValue
74 N6e16df1eb7e54559a6e779bb5920fb55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Visual Pathways
76 rdf:type schema:DefinedTerm
77 N892ecf46ab7e42228585dc1068bfb32b schema:name dimensions_id
78 schema:value pub.1041438957
79 rdf:type schema:PropertyValue
80 N95480e3f89454214be0d18e1c1462768 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 N9f8b8896e4994ef48c02aefd2d88ac92 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Motion Perception
84 rdf:type schema:DefinedTerm
85 Nc67316157d984ea48409abe553e72b28 rdf:first sg:person.01204475774.34
86 rdf:rest N3c7f786ee3f8464bb4fdc6cea4a408c4
87 Nce52a2ce9eb54d80839f9012ad8697ab schema:affiliation grid-institutes:grid.16416.34
88 schema:familyName Brown
89 schema:givenName C. M.
90 rdf:type schema:Person
91 Ndfc4beccf70742cb875a5d9737a2c7d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Humans
93 rdf:type schema:DefinedTerm
94 Ne42f17f3d05c48c4b4f4c713dc5225c2 schema:issueNumber 6
95 rdf:type schema:PublicationIssue
96 Nec0f81aba3d54af3a7102c3ee58bcf86 schema:volumeNumber 60
97 rdf:type schema:PublicationVolume
98 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
99 schema:name Information and Computing Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
102 schema:name Artificial Intelligence and Image Processing
103 rdf:type schema:DefinedTerm
104 sg:journal.1081741 schema:issn 0340-1200
105 1432-0770
106 schema:name Biological Cybernetics
107 schema:publisher Springer Nature
108 rdf:type schema:Periodical
109 sg:person.01204475774.34 schema:affiliation grid-institutes:grid.164295.d
110 schema:familyName Aloimonos
111 schema:givenName J.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204475774.34
113 rdf:type schema:Person
114 sg:pub.10.1007/978-1-4612-5280-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028942010
115 https://doi.org/10.1007/978-1-4612-5280-1
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf00335200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010939667
118 https://doi.org/10.1007/bf00335200
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bf00336915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008695105
121 https://doi.org/10.1007/bf00336915
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bf00340076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082128739
124 https://doi.org/10.1007/bf00340076
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/293133a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039346861
127 https://doi.org/10.1038/293133a0
128 rdf:type schema:CreativeWork
129 sg:pub.10.3758/bf03212378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043716176
130 https://doi.org/10.3758/bf03212378
131 rdf:type schema:CreativeWork
132 grid-institutes:grid.16416.34 schema:alternateName Department of Computer Science, University of Rochester, 14627, Rochester, NY, USA
133 schema:name Department of Computer Science, University of Rochester, 14627, Rochester, NY, USA
134 rdf:type schema:Organization
135 grid-institutes:grid.164295.d schema:alternateName Computer Vision Laboratory, Center for Automation Research, University of Maryland, 20742-3411, College Park, MD, USA
136 schema:name Computer Vision Laboratory, Center for Automation Research, University of Maryland, 20742-3411, College Park, MD, USA
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...