On the kinetic depth effect View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1989-04

AUTHORS

J. Aloimonos, C. M. Brown

ABSTRACT

The problem of the kinetic depth effect is revisited. We study how many points in how many views are necessary and sufficient to recover structure. The constraints in the cases where the velocities of the image points are known, and the positions of the image points are known with the correspondence between them established, are different and they have to be studied separately. In the case of two projections of any number of points there are infinitely many solutions, but if we regularize the problem we get a unique solution under some assumptions. Finally, an algorithm is discussed for learning this particular kind of regularization. More... »

PAGES

445-455

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00204700

DOI

http://dx.doi.org/10.1007/bf00204700

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041438957

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/2719982


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Depth Perception", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Motion Perception", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Visual Pathways", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computer Vision Laboratory, Center for Automation Research, University of Maryland, 20742-3411, College Park, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Computer Vision Laboratory, Center for Automation Research, University of Maryland, 20742-3411, College Park, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aloimonos", 
        "givenName": "J.", 
        "id": "sg:person.01204475774.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204475774.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Rochester, 14627, Rochester, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.16416.34", 
          "name": [
            "Department of Computer Science, University of Rochester, 14627, Rochester, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brown", 
        "givenName": "C. M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00336915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008695105", 
          "https://doi.org/10.1007/bf00336915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00335200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010939667", 
          "https://doi.org/10.1007/bf00335200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5280-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028942010", 
          "https://doi.org/10.1007/978-1-4612-5280-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03212378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043716176", 
          "https://doi.org/10.3758/bf03212378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/293133a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039346861", 
          "https://doi.org/10.1038/293133a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00340076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082128739", 
          "https://doi.org/10.1007/bf00340076"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1989-04", 
    "datePublishedReg": "1989-04-01", 
    "description": "The problem of the kinetic depth effect is revisited. We study how many points in how many views are necessary and sufficient to recover structure. The constraints in the cases where the velocities of the image points are known, and the positions of the image points are known with the correspondence between them established, are different and they have to be studied separately. In the case of two projections of any number of points there are infinitely many solutions, but if we regularize the problem we get a unique solution under some assumptions. Finally, an algorithm is discussed for learning this particular kind of regularization.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00204700", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1081741", 
        "issn": [
          "0340-1200", 
          "1432-0770"
        ], 
        "name": "Biological Cybernetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "60"
      }
    ], 
    "keywords": [
      "image points", 
      "number of points", 
      "kinetic depth effect", 
      "algorithm", 
      "constraints", 
      "solution", 
      "particular kind", 
      "regularization", 
      "point", 
      "view", 
      "correspondence", 
      "unique solution", 
      "kind", 
      "depth effect", 
      "projections", 
      "number", 
      "assumption", 
      "structure", 
      "cases", 
      "position", 
      "velocity", 
      "effect", 
      "problem"
    ], 
    "name": "On the kinetic depth effect", 
    "pagination": "445-455", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041438957"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00204700"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "2719982"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00204700", 
      "https://app.dimensions.ai/details/publication/pub.1041438957"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_190.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00204700"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00204700'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00204700'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00204700'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00204700'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      21 PREDICATES      60 URIs      46 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00204700 schema:about N196c45a7bebf45859d01b5c1db07bc53
2 N24a32eeb0f144fc5bc0f75bd454cd395
3 N6cc263f7060341cf8d5d5afbe74dd8d3
4 Ne44058010714443aba690c2063961061
5 Nf4e5c63ae4104704a671b09d756f8ff0
6 anzsrc-for:08
7 anzsrc-for:0801
8 schema:author Nca367563e4c443f8a89f7f39b2cd647c
9 schema:citation sg:pub.10.1007/978-1-4612-5280-1
10 sg:pub.10.1007/bf00335200
11 sg:pub.10.1007/bf00336915
12 sg:pub.10.1007/bf00340076
13 sg:pub.10.1038/293133a0
14 sg:pub.10.3758/bf03212378
15 schema:datePublished 1989-04
16 schema:datePublishedReg 1989-04-01
17 schema:description The problem of the kinetic depth effect is revisited. We study how many points in how many views are necessary and sufficient to recover structure. The constraints in the cases where the velocities of the image points are known, and the positions of the image points are known with the correspondence between them established, are different and they have to be studied separately. In the case of two projections of any number of points there are infinitely many solutions, but if we regularize the problem we get a unique solution under some assumptions. Finally, an algorithm is discussed for learning this particular kind of regularization.
18 schema:genre article
19 schema:isAccessibleForFree false
20 schema:isPartOf N9d9a5e08359a4b2c9c155fffaadc3a87
21 Neb8731faf1504b79b5230953da3c37b4
22 sg:journal.1081741
23 schema:keywords algorithm
24 assumption
25 cases
26 constraints
27 correspondence
28 depth effect
29 effect
30 image points
31 kind
32 kinetic depth effect
33 number
34 number of points
35 particular kind
36 point
37 position
38 problem
39 projections
40 regularization
41 solution
42 structure
43 unique solution
44 velocity
45 view
46 schema:name On the kinetic depth effect
47 schema:pagination 445-455
48 schema:productId N678f5d516ef9465693895aa531d0b6d5
49 Nb4917b4212374dc3a3da0ef86a3efcc3
50 Nf0a7879336c144b29cb6f9496412d5f0
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041438957
52 https://doi.org/10.1007/bf00204700
53 schema:sdDatePublished 2022-11-24T20:46
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Nd3037f98c2f0492c81f9f720fec5b78c
56 schema:url https://doi.org/10.1007/bf00204700
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N196c45a7bebf45859d01b5c1db07bc53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Models, Biological
62 rdf:type schema:DefinedTerm
63 N24a32eeb0f144fc5bc0f75bd454cd395 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Motion Perception
65 rdf:type schema:DefinedTerm
66 N678f5d516ef9465693895aa531d0b6d5 schema:name dimensions_id
67 schema:value pub.1041438957
68 rdf:type schema:PropertyValue
69 N6cc263f7060341cf8d5d5afbe74dd8d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Humans
71 rdf:type schema:DefinedTerm
72 N9d9a5e08359a4b2c9c155fffaadc3a87 schema:issueNumber 6
73 rdf:type schema:PublicationIssue
74 Nb4917b4212374dc3a3da0ef86a3efcc3 schema:name doi
75 schema:value 10.1007/bf00204700
76 rdf:type schema:PropertyValue
77 Nca367563e4c443f8a89f7f39b2cd647c rdf:first sg:person.01204475774.34
78 rdf:rest Nd6dd7d5dcf02448a8e0887eb4ef43461
79 Nd3037f98c2f0492c81f9f720fec5b78c schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 Nd6dd7d5dcf02448a8e0887eb4ef43461 rdf:first Nf4cf950efa524a1490a6c1e1c53ebcfd
82 rdf:rest rdf:nil
83 Ne44058010714443aba690c2063961061 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Visual Pathways
85 rdf:type schema:DefinedTerm
86 Neb8731faf1504b79b5230953da3c37b4 schema:volumeNumber 60
87 rdf:type schema:PublicationVolume
88 Nf0a7879336c144b29cb6f9496412d5f0 schema:name pubmed_id
89 schema:value 2719982
90 rdf:type schema:PropertyValue
91 Nf4cf950efa524a1490a6c1e1c53ebcfd schema:affiliation grid-institutes:grid.16416.34
92 schema:familyName Brown
93 schema:givenName C. M.
94 rdf:type schema:Person
95 Nf4e5c63ae4104704a671b09d756f8ff0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Depth Perception
97 rdf:type schema:DefinedTerm
98 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
99 schema:name Information and Computing Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
102 schema:name Artificial Intelligence and Image Processing
103 rdf:type schema:DefinedTerm
104 sg:journal.1081741 schema:issn 0340-1200
105 1432-0770
106 schema:name Biological Cybernetics
107 schema:publisher Springer Nature
108 rdf:type schema:Periodical
109 sg:person.01204475774.34 schema:affiliation grid-institutes:grid.164295.d
110 schema:familyName Aloimonos
111 schema:givenName J.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204475774.34
113 rdf:type schema:Person
114 sg:pub.10.1007/978-1-4612-5280-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028942010
115 https://doi.org/10.1007/978-1-4612-5280-1
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf00335200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010939667
118 https://doi.org/10.1007/bf00335200
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bf00336915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008695105
121 https://doi.org/10.1007/bf00336915
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bf00340076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082128739
124 https://doi.org/10.1007/bf00340076
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/293133a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039346861
127 https://doi.org/10.1038/293133a0
128 rdf:type schema:CreativeWork
129 sg:pub.10.3758/bf03212378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043716176
130 https://doi.org/10.3758/bf03212378
131 rdf:type schema:CreativeWork
132 grid-institutes:grid.16416.34 schema:alternateName Department of Computer Science, University of Rochester, 14627, Rochester, NY, USA
133 schema:name Department of Computer Science, University of Rochester, 14627, Rochester, NY, USA
134 rdf:type schema:Organization
135 grid-institutes:grid.164295.d schema:alternateName Computer Vision Laboratory, Center for Automation Research, University of Maryland, 20742-3411, College Park, MD, USA
136 schema:name Computer Vision Laboratory, Center for Automation Research, University of Maryland, 20742-3411, College Park, MD, USA
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...