Formation and control of optimal trajectory in human multijoint arm movement View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1989-06

AUTHORS

Y. Uno, M. Kawato, R. Suzuki

ABSTRACT

In this paper, we study trajectory planning and control in voluntary, human arm movements. When a hand is moved to a target, the central nervous system must select one specific trajectory among an infinite number of possible trajectories that lead to the target position. First, we discuss what criterion is adopted for trajectory determination. Several researchers measured the hand trajectories of skilled movements and found common invariant features. For example, when moving the hand between a pair of targets, subjects tended to generate roughly straight hand paths with bell-shaped speed profiles. On the basis of these observations and dynamic optimization theory, we propose a mathematical model which accounts for formation of hand trajectories. This model is formulated by defining an objective function, a measure of performance for any possible movement: square of the rate of change of torque integrated over the entire movement. That is, the objective function CT is defined as follows: (formula; see text) We overcome this difficult by developing an iterative scheme, with which the optimal trajectory and the associated motor command are simultaneously computed. To evaluate our model, human hand trajectories were experimentally measured under various behavioral situations. These results supported the idea that the human hand trajectory is planned and controlled in accordance with the minimum torque-change criterion. More... »

PAGES

89-101

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00204593

DOI

http://dx.doi.org/10.1007/bf00204593

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042513593

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/2742921


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arm", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Movement", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, 560, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uno", 
        "givenName": "Y.", 
        "id": "sg:person.014533010621.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014533010621.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, 560, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawato", 
        "givenName": "M.", 
        "id": "sg:person.01230705277.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230705277.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, 560, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suzuki", 
        "givenName": "R.", 
        "id": "sg:person.013656713222.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013656713222.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00364149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004224027", 
          "https://doi.org/10.1007/bf00364149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.83.12.4263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006027184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00236911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006819429", 
          "https://doi.org/10.1007/bf00236911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00236911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006819429", 
          "https://doi.org/10.1007/bf00236911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9290(82)90043-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012167967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(79)90149-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014780098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/317314a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016903244", 
          "https://doi.org/10.1038/317314a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-295x.95.1.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029502400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00339982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035415850", 
          "https://doi.org/10.1007/bf00339982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00353957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036180283", 
          "https://doi.org/10.1007/bf00353957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.79.8.2554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038762424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00318008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043387128", 
          "https://doi.org/10.1007/bf00318008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00318008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043387128", 
          "https://doi.org/10.1007/bf00318008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00318203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044007278", 
          "https://doi.org/10.1007/bf00318203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00318203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044007278", 
          "https://doi.org/10.1007/bf00318203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00338819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044991904", 
          "https://doi.org/10.1007/bf00338819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/105.2.331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059437516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/37.1867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061162955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1979.42.1.183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074608172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.05-07-01688.1985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1080085642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00339943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1080089235", 
          "https://doi.org/10.1007/bf00339943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.05-09-02318.1985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1080091524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.04-11-02738.1984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081781218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.04-11-02745.1984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081781219"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1989-06", 
    "datePublishedReg": "1989-06-01", 
    "description": "In this paper, we study trajectory planning and control in voluntary, human arm movements. When a hand is moved to a target, the central nervous system must select one specific trajectory among an infinite number of possible trajectories that lead to the target position. First, we discuss what criterion is adopted for trajectory determination. Several researchers measured the hand trajectories of skilled movements and found common invariant features. For example, when moving the hand between a pair of targets, subjects tended to generate roughly straight hand paths with bell-shaped speed profiles. On the basis of these observations and dynamic optimization theory, we propose a mathematical model which accounts for formation of hand trajectories. This model is formulated by defining an objective function, a measure of performance for any possible movement: square of the rate of change of torque integrated over the entire movement. That is, the objective function CT is defined as follows: (formula; see text) We overcome this difficult by developing an iterative scheme, with which the optimal trajectory and the associated motor command are simultaneously computed. To evaluate our model, human hand trajectories were experimentally measured under various behavioral situations. These results supported the idea that the human hand trajectory is planned and controlled in accordance with the minimum torque-change criterion.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00204593", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1081741", 
        "issn": [
          "0340-1200", 
          "1432-0770"
        ], 
        "name": "Biological Cybernetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "61"
      }
    ], 
    "name": "Formation and control of optimal trajectory in human multijoint arm movement", 
    "pagination": "89-101", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ca82ca4a7b8cda2cde247f88223401177b3e7e3cba94faa491a4b5cffd25495b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "2742921"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7502533"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00204593"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042513593"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00204593", 
      "https://app.dimensions.ai/details/publication/pub.1042513593"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130829_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00204593"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00204593'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00204593'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00204593'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00204593'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      54 URIs      25 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00204593 schema:about N65c9738a59da4181ae9893135d5830b9
2 N6793d424c17d40ec99a692d79c9a16b6
3 N788d44ebc71248b3bda402b307e4b009
4 Nfc093dccca254ed2a1153b9fff27efd0
5 anzsrc-for:01
6 anzsrc-for:0102
7 schema:author N231029c9b9dd4bba9ec8227d5eb62303
8 schema:citation sg:pub.10.1007/bf00236911
9 sg:pub.10.1007/bf00318008
10 sg:pub.10.1007/bf00318203
11 sg:pub.10.1007/bf00338819
12 sg:pub.10.1007/bf00339943
13 sg:pub.10.1007/bf00339982
14 sg:pub.10.1007/bf00353957
15 sg:pub.10.1007/bf00364149
16 sg:pub.10.1038/317314a0
17 https://doi.org/10.1016/0021-9290(82)90043-4
18 https://doi.org/10.1016/0022-247x(79)90149-5
19 https://doi.org/10.1037/0033-295x.95.1.49
20 https://doi.org/10.1073/pnas.79.8.2554
21 https://doi.org/10.1073/pnas.83.12.4263
22 https://doi.org/10.1093/brain/105.2.331
23 https://doi.org/10.1109/37.1867
24 https://doi.org/10.1152/jn.1979.42.1.183
25 https://doi.org/10.1523/jneurosci.04-11-02738.1984
26 https://doi.org/10.1523/jneurosci.04-11-02745.1984
27 https://doi.org/10.1523/jneurosci.05-07-01688.1985
28 https://doi.org/10.1523/jneurosci.05-09-02318.1985
29 schema:datePublished 1989-06
30 schema:datePublishedReg 1989-06-01
31 schema:description In this paper, we study trajectory planning and control in voluntary, human arm movements. When a hand is moved to a target, the central nervous system must select one specific trajectory among an infinite number of possible trajectories that lead to the target position. First, we discuss what criterion is adopted for trajectory determination. Several researchers measured the hand trajectories of skilled movements and found common invariant features. For example, when moving the hand between a pair of targets, subjects tended to generate roughly straight hand paths with bell-shaped speed profiles. On the basis of these observations and dynamic optimization theory, we propose a mathematical model which accounts for formation of hand trajectories. This model is formulated by defining an objective function, a measure of performance for any possible movement: square of the rate of change of torque integrated over the entire movement. That is, the objective function CT is defined as follows: (formula; see text) We overcome this difficult by developing an iterative scheme, with which the optimal trajectory and the associated motor command are simultaneously computed. To evaluate our model, human hand trajectories were experimentally measured under various behavioral situations. These results supported the idea that the human hand trajectory is planned and controlled in accordance with the minimum torque-change criterion.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N1de63fb93da940de991dd47ff5ce1db1
36 Ne275f4af068e442db869cc362ada53d1
37 sg:journal.1081741
38 schema:name Formation and control of optimal trajectory in human multijoint arm movement
39 schema:pagination 89-101
40 schema:productId N076fe73e4cb94f709e45b3a485b153c1
41 N1363ad4ae16d4454bb55548715b2606b
42 N87932bd924d84caaa43d610cdf2651fc
43 Naf31d5d3d3ab4504938f07f7fb6535bc
44 Nfc8bda3746714fa8997b0d56783d49dc
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042513593
46 https://doi.org/10.1007/bf00204593
47 schema:sdDatePublished 2019-04-11T14:00
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N6e7797b145bb4cc1aff9c7d44615050c
50 schema:url http://link.springer.com/10.1007/BF00204593
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N076fe73e4cb94f709e45b3a485b153c1 schema:name dimensions_id
55 schema:value pub.1042513593
56 rdf:type schema:PropertyValue
57 N1363ad4ae16d4454bb55548715b2606b schema:name nlm_unique_id
58 schema:value 7502533
59 rdf:type schema:PropertyValue
60 N1de63fb93da940de991dd47ff5ce1db1 schema:volumeNumber 61
61 rdf:type schema:PublicationVolume
62 N231029c9b9dd4bba9ec8227d5eb62303 rdf:first sg:person.014533010621.80
63 rdf:rest N4c2069247c6941cdab36fff7b4352234
64 N25916fe28bf34025b705e82e4efd0402 rdf:first sg:person.013656713222.33
65 rdf:rest rdf:nil
66 N4c2069247c6941cdab36fff7b4352234 rdf:first sg:person.01230705277.42
67 rdf:rest N25916fe28bf34025b705e82e4efd0402
68 N65c9738a59da4181ae9893135d5830b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Models, Biological
70 rdf:type schema:DefinedTerm
71 N6793d424c17d40ec99a692d79c9a16b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Movement
73 rdf:type schema:DefinedTerm
74 N6e7797b145bb4cc1aff9c7d44615050c schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N788d44ebc71248b3bda402b307e4b009 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Arm
78 rdf:type schema:DefinedTerm
79 N87932bd924d84caaa43d610cdf2651fc schema:name doi
80 schema:value 10.1007/bf00204593
81 rdf:type schema:PropertyValue
82 Naf31d5d3d3ab4504938f07f7fb6535bc schema:name pubmed_id
83 schema:value 2742921
84 rdf:type schema:PropertyValue
85 Ne275f4af068e442db869cc362ada53d1 schema:issueNumber 2
86 rdf:type schema:PublicationIssue
87 Nfc093dccca254ed2a1153b9fff27efd0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Humans
89 rdf:type schema:DefinedTerm
90 Nfc8bda3746714fa8997b0d56783d49dc schema:name readcube_id
91 schema:value ca82ca4a7b8cda2cde247f88223401177b3e7e3cba94faa491a4b5cffd25495b
92 rdf:type schema:PropertyValue
93 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
94 schema:name Mathematical Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
97 schema:name Applied Mathematics
98 rdf:type schema:DefinedTerm
99 sg:journal.1081741 schema:issn 0340-1200
100 1432-0770
101 schema:name Biological Cybernetics
102 rdf:type schema:Periodical
103 sg:person.01230705277.42 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
104 schema:familyName Kawato
105 schema:givenName M.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230705277.42
107 rdf:type schema:Person
108 sg:person.013656713222.33 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
109 schema:familyName Suzuki
110 schema:givenName R.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013656713222.33
112 rdf:type schema:Person
113 sg:person.014533010621.80 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
114 schema:familyName Uno
115 schema:givenName Y.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014533010621.80
117 rdf:type schema:Person
118 sg:pub.10.1007/bf00236911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006819429
119 https://doi.org/10.1007/bf00236911
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/bf00318008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043387128
122 https://doi.org/10.1007/bf00318008
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/bf00318203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044007278
125 https://doi.org/10.1007/bf00318203
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/bf00338819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044991904
128 https://doi.org/10.1007/bf00338819
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/bf00339943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1080089235
131 https://doi.org/10.1007/bf00339943
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/bf00339982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035415850
134 https://doi.org/10.1007/bf00339982
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/bf00353957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036180283
137 https://doi.org/10.1007/bf00353957
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/bf00364149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004224027
140 https://doi.org/10.1007/bf00364149
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/317314a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016903244
143 https://doi.org/10.1038/317314a0
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/0021-9290(82)90043-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012167967
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/0022-247x(79)90149-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014780098
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1037/0033-295x.95.1.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029502400
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1073/pnas.79.8.2554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038762424
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1073/pnas.83.12.4263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006027184
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1093/brain/105.2.331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059437516
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/37.1867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061162955
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1152/jn.1979.42.1.183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074608172
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1523/jneurosci.04-11-02738.1984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081781218
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1523/jneurosci.04-11-02745.1984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081781219
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1523/jneurosci.05-07-01688.1985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1080085642
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1523/jneurosci.05-09-02318.1985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1080091524
168 rdf:type schema:CreativeWork
169 https://www.grid.ac/institutes/grid.136593.b schema:alternateName Osaka University
170 schema:name Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, 560, Osaka, Japan
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...