Postmortem evaluation of four randomly selected automated biopsy devices for transthoracic lung biopsy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-09

AUTHORS

Hans-Joachim Wagner, Peter Barth, Carmen Schade-Brittinger, Sven Plein, Klaus-Jochen Klose

ABSTRACT

PURPOSE: To evaluate four automated devices to achieve transthoracic lung biopsy. METHODS: Transthoracic lung biopsy specimens were obtained randomly from 21 human cadavers with unsuspicious lungs using Biopty (18- and 20-gauge), BIP (18 and 20-gauge), ASAP (18 gauge), and Autovac (18- and 20-gauge) devices. A total of 63 biopsies were carried out with each device and each needle diameter. The same devices and needles were then used randomly for biopsy of peripheral lung metastases. Specimens obtained during both parts of the study were analyzed for the area of tissue on the histologic section, adequacy of tissue for diagnosis, tissue preservation, and crush artifact. The examining pathologist was kept unaware of which procedure was used to obtain the specimens and the cadavers' clinical history. RESULTS: The Biopty 18-gauge device performed statistically better than any other of the evaluated systems for biopsy of normal lung parenchyma (p < 0.05). For biopsy of lung metastases, the differences between the devices and needle diameters were less, although the Biopty 18-gauge device performed better than the Autovac 18-gauge, BIP 18-gauge, and all 20-gauge devices for the area of tissue on the histologic section (p < 0.05). The results of the full-cut Autovac biopsy system were remarkable because of the large number of biopsies during which no tissue was obtained. CONCLUSION: Automated biopsy devices can obtain high quality lung specimens sufficient for definite histopathologic diagnosis. However, additional clinical studies on the use of automated biopsy devices for lung biopsy are mandatory. More... »

PAGES

300-306

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00203680

DOI

http://dx.doi.org/10.1007/bf00203680

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051947261

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/8846469


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Automation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biopsy, Needle", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Philipp University of Marburg", 
          "id": "https://www.grid.ac/institutes/grid.10253.35", 
          "name": [
            "Department of Diagnostic Radiology, University Hospital, Philipps University, D-35033, Baldingerstr., Marburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wagner", 
        "givenName": "Hans-Joachim", 
        "id": "sg:person.01340510674.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340510674.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Philipp University of Marburg", 
          "id": "https://www.grid.ac/institutes/grid.10253.35", 
          "name": [
            "Department of Pathology, University Hospital, Philipps University, D-35033, Baldingerstr., Marburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barth", 
        "givenName": "Peter", 
        "id": "sg:person.01106557716.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106557716.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Philipp University of Marburg", 
          "id": "https://www.grid.ac/institutes/grid.10253.35", 
          "name": [
            "Department of Biostatistics, University Hospital, Philipps University, D-35033, Baldingerstr., Marburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schade-Brittinger", 
        "givenName": "Carmen", 
        "id": "sg:person.01146425743.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146425743.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Philipp University of Marburg", 
          "id": "https://www.grid.ac/institutes/grid.10253.35", 
          "name": [
            "Department of Diagnostic Radiology, University Hospital, Philipps University, D-35033, Baldingerstr., Marburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Plein", 
        "givenName": "Sven", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Philipp University of Marburg", 
          "id": "https://www.grid.ac/institutes/grid.10253.35", 
          "name": [
            "Department of Diagnostic Radiology, University Hospital, Philipps University, D-35033, Baldingerstr., Marburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klose", 
        "givenName": "Klaus-Jochen", 
        "id": "sg:person.0745120173.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745120173.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1164/ajrccm/140.1.255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041181970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.151.5.903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069315174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.152.3.451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069315335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.160.1.8416620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069317672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.184.3.1509077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076826572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.176.3.2167498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078410410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.176.3.2202013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078466349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.176.3.2389013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078762081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.176.3.2389024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078762099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.171.3.2655001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079176737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.169.3.3055026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079528479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.148.3.6878680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082007439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/028418518202300621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082193628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/028418518202300621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082193628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.186.2.8421758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082800307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.186.2.8421768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082800318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.187.3.8497611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082831955"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995-09", 
    "datePublishedReg": "1995-09-01", 
    "description": "PURPOSE: To evaluate four automated devices to achieve transthoracic lung biopsy.\nMETHODS: Transthoracic lung biopsy specimens were obtained randomly from 21 human cadavers with unsuspicious lungs using Biopty (18- and 20-gauge), BIP (18 and 20-gauge), ASAP (18 gauge), and Autovac (18- and 20-gauge) devices. A total of 63 biopsies were carried out with each device and each needle diameter. The same devices and needles were then used randomly for biopsy of peripheral lung metastases. Specimens obtained during both parts of the study were analyzed for the area of tissue on the histologic section, adequacy of tissue for diagnosis, tissue preservation, and crush artifact. The examining pathologist was kept unaware of which procedure was used to obtain the specimens and the cadavers' clinical history.\nRESULTS: The Biopty 18-gauge device performed statistically better than any other of the evaluated systems for biopsy of normal lung parenchyma (p < 0.05). For biopsy of lung metastases, the differences between the devices and needle diameters were less, although the Biopty 18-gauge device performed better than the Autovac 18-gauge, BIP 18-gauge, and all 20-gauge devices for the area of tissue on the histologic section (p < 0.05). The results of the full-cut Autovac biopsy system were remarkable because of the large number of biopsies during which no tissue was obtained.\nCONCLUSION: Automated biopsy devices can obtain high quality lung specimens sufficient for definite histopathologic diagnosis. However, additional clinical studies on the use of automated biopsy devices for lung biopsy are mandatory.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00203680", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1091062", 
        "issn": [
          "0174-1551", 
          "1432-086X"
        ], 
        "name": "CardioVascular and Interventional Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Postmortem evaluation of four randomly selected automated biopsy devices for transthoracic lung biopsy", 
    "pagination": "300-306", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f7722f823cfa5eb9bfbe218ab48bb5e315ac181efb938de8586a353ddff9eea2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "8846469"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8003538"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00203680"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051947261"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00203680", 
      "https://app.dimensions.ai/details/publication/pub.1051947261"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130830_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00203680"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00203680'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00203680'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00203680'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00203680'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      21 PREDICATES      51 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00203680 schema:about N07a861d5d4104bbfb3804e2c570c8f62
2 N2f3209a22f244d94ab6bb0dccaac44e0
3 N38b1b400221a412abe81d6826e68863d
4 N8dd02dde6f1945a394a61f84cce5e734
5 N9392c747702b468fae3cf9c882a1ab84
6 Nc426707749fa43418c191363df4eace8
7 anzsrc-for:11
8 anzsrc-for:1102
9 schema:author N9c571e131549401a930684c9346178fc
10 schema:citation https://doi.org/10.1148/radiology.148.3.6878680
11 https://doi.org/10.1148/radiology.169.3.3055026
12 https://doi.org/10.1148/radiology.171.3.2655001
13 https://doi.org/10.1148/radiology.176.3.2167498
14 https://doi.org/10.1148/radiology.176.3.2202013
15 https://doi.org/10.1148/radiology.176.3.2389013
16 https://doi.org/10.1148/radiology.176.3.2389024
17 https://doi.org/10.1148/radiology.184.3.1509077
18 https://doi.org/10.1148/radiology.186.2.8421758
19 https://doi.org/10.1148/radiology.186.2.8421768
20 https://doi.org/10.1148/radiology.187.3.8497611
21 https://doi.org/10.1164/ajrccm/140.1.255
22 https://doi.org/10.1177/028418518202300621
23 https://doi.org/10.2214/ajr.151.5.903
24 https://doi.org/10.2214/ajr.152.3.451
25 https://doi.org/10.2214/ajr.160.1.8416620
26 schema:datePublished 1995-09
27 schema:datePublishedReg 1995-09-01
28 schema:description PURPOSE: To evaluate four automated devices to achieve transthoracic lung biopsy. METHODS: Transthoracic lung biopsy specimens were obtained randomly from 21 human cadavers with unsuspicious lungs using Biopty (18- and 20-gauge), BIP (18 and 20-gauge), ASAP (18 gauge), and Autovac (18- and 20-gauge) devices. A total of 63 biopsies were carried out with each device and each needle diameter. The same devices and needles were then used randomly for biopsy of peripheral lung metastases. Specimens obtained during both parts of the study were analyzed for the area of tissue on the histologic section, adequacy of tissue for diagnosis, tissue preservation, and crush artifact. The examining pathologist was kept unaware of which procedure was used to obtain the specimens and the cadavers' clinical history. RESULTS: The Biopty 18-gauge device performed statistically better than any other of the evaluated systems for biopsy of normal lung parenchyma (p < 0.05). For biopsy of lung metastases, the differences between the devices and needle diameters were less, although the Biopty 18-gauge device performed better than the Autovac 18-gauge, BIP 18-gauge, and all 20-gauge devices for the area of tissue on the histologic section (p < 0.05). The results of the full-cut Autovac biopsy system were remarkable because of the large number of biopsies during which no tissue was obtained. CONCLUSION: Automated biopsy devices can obtain high quality lung specimens sufficient for definite histopathologic diagnosis. However, additional clinical studies on the use of automated biopsy devices for lung biopsy are mandatory.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N66b19c9e97454d968d9a07cff6fc3707
33 Nb465eae7c5a3438b8b11131a83930477
34 sg:journal.1091062
35 schema:name Postmortem evaluation of four randomly selected automated biopsy devices for transthoracic lung biopsy
36 schema:pagination 300-306
37 schema:productId N0a0f072b88d5497587657f3792536127
38 N313b63027f9640ac850ba596f2ebae0e
39 N851ba0f8890e44d0b41ce7698868f290
40 Na2e0fddab5a3482489f3cc9157a306c4
41 Ne8cb7a1408014cba9ba056871621c18f
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051947261
43 https://doi.org/10.1007/bf00203680
44 schema:sdDatePublished 2019-04-11T14:02
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N16d7be2d826649018f8778dd14be8e06
47 schema:url http://link.springer.com/10.1007/BF00203680
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N07a861d5d4104bbfb3804e2c570c8f62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
52 schema:name Humans
53 rdf:type schema:DefinedTerm
54 N0a0f072b88d5497587657f3792536127 schema:name doi
55 schema:value 10.1007/bf00203680
56 rdf:type schema:PropertyValue
57 N16d7be2d826649018f8778dd14be8e06 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N2d7cf82769d14fb8bb260548b6912136 rdf:first sg:person.01106557716.14
60 rdf:rest Ne4647f92413e49d885a2760ddee4a82f
61 N2f3209a22f244d94ab6bb0dccaac44e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Sensitivity and Specificity
63 rdf:type schema:DefinedTerm
64 N30bc7ba612844a44a777af64941342cc rdf:first Nf5aebe1757754475b9bf10f8539de081
65 rdf:rest Nb80c1a6ded2745669c03e51a0dff4172
66 N313b63027f9640ac850ba596f2ebae0e schema:name pubmed_id
67 schema:value 8846469
68 rdf:type schema:PropertyValue
69 N38b1b400221a412abe81d6826e68863d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Lung Neoplasms
71 rdf:type schema:DefinedTerm
72 N66b19c9e97454d968d9a07cff6fc3707 schema:issueNumber 5
73 rdf:type schema:PublicationIssue
74 N851ba0f8890e44d0b41ce7698868f290 schema:name readcube_id
75 schema:value f7722f823cfa5eb9bfbe218ab48bb5e315ac181efb938de8586a353ddff9eea2
76 rdf:type schema:PropertyValue
77 N8dd02dde6f1945a394a61f84cce5e734 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Biopsy, Needle
79 rdf:type schema:DefinedTerm
80 N9392c747702b468fae3cf9c882a1ab84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Automation
82 rdf:type schema:DefinedTerm
83 N9c571e131549401a930684c9346178fc rdf:first sg:person.01340510674.53
84 rdf:rest N2d7cf82769d14fb8bb260548b6912136
85 Na2e0fddab5a3482489f3cc9157a306c4 schema:name nlm_unique_id
86 schema:value 8003538
87 rdf:type schema:PropertyValue
88 Nb465eae7c5a3438b8b11131a83930477 schema:volumeNumber 18
89 rdf:type schema:PublicationVolume
90 Nb80c1a6ded2745669c03e51a0dff4172 rdf:first sg:person.0745120173.71
91 rdf:rest rdf:nil
92 Nc426707749fa43418c191363df4eace8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Lung
94 rdf:type schema:DefinedTerm
95 Ne4647f92413e49d885a2760ddee4a82f rdf:first sg:person.01146425743.98
96 rdf:rest N30bc7ba612844a44a777af64941342cc
97 Ne8cb7a1408014cba9ba056871621c18f schema:name dimensions_id
98 schema:value pub.1051947261
99 rdf:type schema:PropertyValue
100 Nf5aebe1757754475b9bf10f8539de081 schema:affiliation https://www.grid.ac/institutes/grid.10253.35
101 schema:familyName Plein
102 schema:givenName Sven
103 rdf:type schema:Person
104 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
105 schema:name Medical and Health Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
108 schema:name Cardiorespiratory Medicine and Haematology
109 rdf:type schema:DefinedTerm
110 sg:journal.1091062 schema:issn 0174-1551
111 1432-086X
112 schema:name CardioVascular and Interventional Radiology
113 rdf:type schema:Periodical
114 sg:person.01106557716.14 schema:affiliation https://www.grid.ac/institutes/grid.10253.35
115 schema:familyName Barth
116 schema:givenName Peter
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106557716.14
118 rdf:type schema:Person
119 sg:person.01146425743.98 schema:affiliation https://www.grid.ac/institutes/grid.10253.35
120 schema:familyName Schade-Brittinger
121 schema:givenName Carmen
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146425743.98
123 rdf:type schema:Person
124 sg:person.01340510674.53 schema:affiliation https://www.grid.ac/institutes/grid.10253.35
125 schema:familyName Wagner
126 schema:givenName Hans-Joachim
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340510674.53
128 rdf:type schema:Person
129 sg:person.0745120173.71 schema:affiliation https://www.grid.ac/institutes/grid.10253.35
130 schema:familyName Klose
131 schema:givenName Klaus-Jochen
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745120173.71
133 rdf:type schema:Person
134 https://doi.org/10.1148/radiology.148.3.6878680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082007439
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1148/radiology.169.3.3055026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079528479
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1148/radiology.171.3.2655001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079176737
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1148/radiology.176.3.2167498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078410410
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1148/radiology.176.3.2202013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078466349
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1148/radiology.176.3.2389013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078762081
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1148/radiology.176.3.2389024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078762099
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1148/radiology.184.3.1509077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076826572
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1148/radiology.186.2.8421758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082800307
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1148/radiology.186.2.8421768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082800318
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1148/radiology.187.3.8497611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082831955
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1164/ajrccm/140.1.255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041181970
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1177/028418518202300621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082193628
159 rdf:type schema:CreativeWork
160 https://doi.org/10.2214/ajr.151.5.903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069315174
161 rdf:type schema:CreativeWork
162 https://doi.org/10.2214/ajr.152.3.451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069315335
163 rdf:type schema:CreativeWork
164 https://doi.org/10.2214/ajr.160.1.8416620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069317672
165 rdf:type schema:CreativeWork
166 https://www.grid.ac/institutes/grid.10253.35 schema:alternateName Philipp University of Marburg
167 schema:name Department of Biostatistics, University Hospital, Philipps University, D-35033, Baldingerstr., Marburg, Germany
168 Department of Diagnostic Radiology, University Hospital, Philipps University, D-35033, Baldingerstr., Marburg, Germany
169 Department of Pathology, University Hospital, Philipps University, D-35033, Baldingerstr., Marburg, Germany
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...