Fractal dimension of electroencephalographic time series and underlying brain processes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-10

AUTHORS

Werner Lutzenberger, Hubert Preissl, Friedemann Pulvermüller

ABSTRACT

Fractal dimension has been proposed as a useful measure for the characterization of electrophysiological time series. This paper investigates what the pointwise dimension of electroencephalographic (EEG) time series can reveal about underlying neuronal generators. The following theoretical assumptions concerning brain function were made (i) within the cortex, strongly coupled neural assemblies exist which oscillate at certain frequencies when they are active, (ii) several such assemblies can oscillate at a time, and (iii) activity flow between assemblies is minimal. If these assumptions are made, cortical activity can be considered as the weighted sum of a finite number of oscillations (plus noise). It is shown that the correlation dimension of finite time series generated by multiple oscillators increases monotonically with the number of oscillators. Furthermore, it is shown that a reliable estimate of the pointwise dimension of the raw EEG signal can be calculated from a time series as short as a few seconds. These results indicate that (i) The pointwise dimension of the EEG allows conclusions regarding the number of independently oscillating networks in the cortex, and (ii) a reliable estimate of the pointwise dimension of the EEG is possible on the basis of short raw signals. More... »

PAGES

477-482

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00201482

DOI

http://dx.doi.org/10.1007/bf00201482

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047336102

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/7578482


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1702", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electroencephalography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fractals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Neurological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time and Motion Studies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Medizinische Psychologie und Verhaltensneurobiologie, Universit\u00e4t T\u00fcbingen, Gartenstrasse 29, D-72074, T\u00fcbingen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.10392.39", 
          "name": [
            "Institut f\u00fcr Medizinische Psychologie und Verhaltensneurobiologie, Universit\u00e4t T\u00fcbingen, Gartenstrasse 29, D-72074, T\u00fcbingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lutzenberger", 
        "givenName": "Werner", 
        "id": "sg:person.0750416433.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750416433.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Medizinische Psychologie und Verhaltensneurobiologie, Universit\u00e4t T\u00fcbingen, Gartenstrasse 29, D-72074, T\u00fcbingen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.10392.39", 
          "name": [
            "Institut f\u00fcr Medizinische Psychologie und Verhaltensneurobiologie, Universit\u00e4t T\u00fcbingen, Gartenstrasse 29, D-72074, T\u00fcbingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Preissl", 
        "givenName": "Hubert", 
        "id": "sg:person.0717552201.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717552201.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Medizinische Psychologie und Verhaltensneurobiologie, Universit\u00e4t T\u00fcbingen, Gartenstrasse 29, D-72074, T\u00fcbingen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.10392.39", 
          "name": [
            "Institut f\u00fcr Medizinische Psychologie und Verhaltensneurobiologie, Universit\u00e4t T\u00fcbingen, Gartenstrasse 29, D-72074, T\u00fcbingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pulverm\u00fcller", 
        "givenName": "Friedemann", 
        "id": "sg:person.01214737170.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214737170.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00199594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038126736", 
          "https://doi.org/10.1007/bf00199594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/338334a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017767690", 
          "https://doi.org/10.1038/338334a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00202899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043727259", 
          "https://doi.org/10.1007/bf00202899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-71001-8_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017924739", 
          "https://doi.org/10.1007/978-3-642-71001-8_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-93083-6_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001516388", 
          "https://doi.org/10.1007/978-3-642-93083-6_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/333498a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017113517", 
          "https://doi.org/10.1038/333498a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-49967-8_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038835890", 
          "https://doi.org/10.1007/978-3-642-49967-8_19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01129967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033917895", 
          "https://doi.org/10.1007/bf01129967"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995-10", 
    "datePublishedReg": "1995-10-01", 
    "description": "Fractal dimension has been proposed as a useful measure for the characterization of electrophysiological time series. This paper investigates what the pointwise dimension of electroencephalographic (EEG) time series can reveal about underlying neuronal generators. The following theoretical assumptions concerning brain function were made (i) within the cortex, strongly coupled neural assemblies exist which oscillate at certain frequencies when they are active, (ii) several such assemblies can oscillate at a time, and (iii) activity flow between assemblies is minimal. If these assumptions are made, cortical activity can be considered as the weighted sum of a finite number of oscillations (plus noise). It is shown that the correlation dimension of finite time series generated by multiple oscillators increases monotonically with the number of oscillators. Furthermore, it is shown that a reliable estimate of the pointwise dimension of the raw EEG signal can be calculated from a time series as short as a few seconds. These results indicate that (i) The pointwise dimension of the EEG allows conclusions regarding the number of independently oscillating networks in the cortex, and (ii) a reliable estimate of the pointwise dimension of the EEG is possible on the basis of short raw signals.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00201482", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1081741", 
        "issn": [
          "0340-1200", 
          "1432-0770"
        ], 
        "name": "Biological Cybernetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "73"
      }
    ], 
    "keywords": [
      "electroencephalographic time series", 
      "pointwise dimension", 
      "cortical activity", 
      "brain function", 
      "finite time series", 
      "electrophysiological time series", 
      "number of oscillators", 
      "neuronal generators", 
      "time series", 
      "finite number", 
      "brain processes", 
      "fractal dimension", 
      "neural assemblies", 
      "EEG", 
      "weighted sum", 
      "correlation dimension", 
      "useful measure", 
      "reliable estimates", 
      "cortex", 
      "oscillators increases", 
      "certain frequency", 
      "conclusion", 
      "dimensions", 
      "assumption", 
      "number", 
      "series", 
      "estimates", 
      "activity", 
      "measures", 
      "EEG signals", 
      "theoretical assumptions", 
      "oscillator", 
      "oscillations", 
      "increase", 
      "activity flow", 
      "raw EEG signals", 
      "sum", 
      "function", 
      "frequency", 
      "raw signals", 
      "signals", 
      "generator", 
      "flow", 
      "seconds", 
      "time", 
      "network", 
      "results", 
      "such assemblies", 
      "basis", 
      "characterization", 
      "process", 
      "assembly", 
      "paper"
    ], 
    "name": "Fractal dimension of electroencephalographic time series and underlying brain processes", 
    "pagination": "477-482", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047336102"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00201482"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "7578482"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00201482", 
      "https://app.dimensions.ai/details/publication/pub.1047336102"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_265.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00201482"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00201482'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00201482'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00201482'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00201482'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      21 PREDICATES      96 URIs      76 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00201482 schema:about N268d474449e44840ad4fb58fd657d478
2 N337c78c0749e46b2ba73bca5153911df
3 N7f9130602786464abcd6849fa3f99f80
4 N8a168f8cfad04b21a73ce07596fe0fbd
5 Nb71a2d1d42ba4c32a82656aacb4e56eb
6 anzsrc-for:02
7 anzsrc-for:0299
8 anzsrc-for:08
9 anzsrc-for:0801
10 anzsrc-for:17
11 anzsrc-for:1702
12 schema:author Ned71cfe530a24b0ca3994c3c2488779f
13 schema:citation sg:pub.10.1007/978-3-642-49967-8_19
14 sg:pub.10.1007/978-3-642-71001-8_13
15 sg:pub.10.1007/978-3-642-93083-6_9
16 sg:pub.10.1007/bf00199594
17 sg:pub.10.1007/bf00202899
18 sg:pub.10.1007/bf01129967
19 sg:pub.10.1038/333498a0
20 sg:pub.10.1038/338334a0
21 schema:datePublished 1995-10
22 schema:datePublishedReg 1995-10-01
23 schema:description Fractal dimension has been proposed as a useful measure for the characterization of electrophysiological time series. This paper investigates what the pointwise dimension of electroencephalographic (EEG) time series can reveal about underlying neuronal generators. The following theoretical assumptions concerning brain function were made (i) within the cortex, strongly coupled neural assemblies exist which oscillate at certain frequencies when they are active, (ii) several such assemblies can oscillate at a time, and (iii) activity flow between assemblies is minimal. If these assumptions are made, cortical activity can be considered as the weighted sum of a finite number of oscillations (plus noise). It is shown that the correlation dimension of finite time series generated by multiple oscillators increases monotonically with the number of oscillators. Furthermore, it is shown that a reliable estimate of the pointwise dimension of the raw EEG signal can be calculated from a time series as short as a few seconds. These results indicate that (i) The pointwise dimension of the EEG allows conclusions regarding the number of independently oscillating networks in the cortex, and (ii) a reliable estimate of the pointwise dimension of the EEG is possible on the basis of short raw signals.
24 schema:genre article
25 schema:isAccessibleForFree false
26 schema:isPartOf N446d3b5d0ddd4ffda879628521eb2226
27 N71c102c0eae14f1db677564cf125b2ca
28 sg:journal.1081741
29 schema:keywords EEG
30 EEG signals
31 activity
32 activity flow
33 assembly
34 assumption
35 basis
36 brain function
37 brain processes
38 certain frequency
39 characterization
40 conclusion
41 correlation dimension
42 cortex
43 cortical activity
44 dimensions
45 electroencephalographic time series
46 electrophysiological time series
47 estimates
48 finite number
49 finite time series
50 flow
51 fractal dimension
52 frequency
53 function
54 generator
55 increase
56 measures
57 network
58 neural assemblies
59 neuronal generators
60 number
61 number of oscillators
62 oscillations
63 oscillator
64 oscillators increases
65 paper
66 pointwise dimension
67 process
68 raw EEG signals
69 raw signals
70 reliable estimates
71 results
72 seconds
73 series
74 signals
75 such assemblies
76 sum
77 theoretical assumptions
78 time
79 time series
80 useful measure
81 weighted sum
82 schema:name Fractal dimension of electroencephalographic time series and underlying brain processes
83 schema:pagination 477-482
84 schema:productId N076d760b65b44c3db6039ef575647723
85 N2ab557e721db47b9887660a9886b552e
86 N2ea7a9f3013143d0b93a6400abf6d822
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047336102
88 https://doi.org/10.1007/bf00201482
89 schema:sdDatePublished 2022-11-24T20:47
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher Ne40ba2171d624307b5937b1cb6ad06ef
92 schema:url https://doi.org/10.1007/bf00201482
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N076d760b65b44c3db6039ef575647723 schema:name doi
97 schema:value 10.1007/bf00201482
98 rdf:type schema:PropertyValue
99 N268d474449e44840ad4fb58fd657d478 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Electroencephalography
101 rdf:type schema:DefinedTerm
102 N2ab557e721db47b9887660a9886b552e schema:name pubmed_id
103 schema:value 7578482
104 rdf:type schema:PropertyValue
105 N2ea7a9f3013143d0b93a6400abf6d822 schema:name dimensions_id
106 schema:value pub.1047336102
107 rdf:type schema:PropertyValue
108 N337c78c0749e46b2ba73bca5153911df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Brain
110 rdf:type schema:DefinedTerm
111 N446d3b5d0ddd4ffda879628521eb2226 schema:issueNumber 5
112 rdf:type schema:PublicationIssue
113 N4855109c4f3a4feea022b8804cc5c22f rdf:first sg:person.0717552201.40
114 rdf:rest N8e69ffd97a86494c9ab85ee89f5f31e8
115 N71c102c0eae14f1db677564cf125b2ca schema:volumeNumber 73
116 rdf:type schema:PublicationVolume
117 N7f9130602786464abcd6849fa3f99f80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Models, Neurological
119 rdf:type schema:DefinedTerm
120 N8a168f8cfad04b21a73ce07596fe0fbd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Time and Motion Studies
122 rdf:type schema:DefinedTerm
123 N8e69ffd97a86494c9ab85ee89f5f31e8 rdf:first sg:person.01214737170.14
124 rdf:rest rdf:nil
125 Nb71a2d1d42ba4c32a82656aacb4e56eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Fractals
127 rdf:type schema:DefinedTerm
128 Ne40ba2171d624307b5937b1cb6ad06ef schema:name Springer Nature - SN SciGraph project
129 rdf:type schema:Organization
130 Ned71cfe530a24b0ca3994c3c2488779f rdf:first sg:person.0750416433.61
131 rdf:rest N4855109c4f3a4feea022b8804cc5c22f
132 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
133 schema:name Physical Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
136 schema:name Other Physical Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
139 schema:name Information and Computing Sciences
140 rdf:type schema:DefinedTerm
141 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
142 schema:name Artificial Intelligence and Image Processing
143 rdf:type schema:DefinedTerm
144 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
145 schema:name Psychology and Cognitive Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:1702 schema:inDefinedTermSet anzsrc-for:
148 schema:name Cognitive Sciences
149 rdf:type schema:DefinedTerm
150 sg:journal.1081741 schema:issn 0340-1200
151 1432-0770
152 schema:name Biological Cybernetics
153 schema:publisher Springer Nature
154 rdf:type schema:Periodical
155 sg:person.01214737170.14 schema:affiliation grid-institutes:grid.10392.39
156 schema:familyName Pulvermüller
157 schema:givenName Friedemann
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214737170.14
159 rdf:type schema:Person
160 sg:person.0717552201.40 schema:affiliation grid-institutes:grid.10392.39
161 schema:familyName Preissl
162 schema:givenName Hubert
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717552201.40
164 rdf:type schema:Person
165 sg:person.0750416433.61 schema:affiliation grid-institutes:grid.10392.39
166 schema:familyName Lutzenberger
167 schema:givenName Werner
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750416433.61
169 rdf:type schema:Person
170 sg:pub.10.1007/978-3-642-49967-8_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038835890
171 https://doi.org/10.1007/978-3-642-49967-8_19
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/978-3-642-71001-8_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017924739
174 https://doi.org/10.1007/978-3-642-71001-8_13
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/978-3-642-93083-6_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001516388
177 https://doi.org/10.1007/978-3-642-93083-6_9
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/bf00199594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038126736
180 https://doi.org/10.1007/bf00199594
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/bf00202899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043727259
183 https://doi.org/10.1007/bf00202899
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/bf01129967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033917895
186 https://doi.org/10.1007/bf01129967
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/333498a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017113517
189 https://doi.org/10.1038/333498a0
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/338334a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017767690
192 https://doi.org/10.1038/338334a0
193 rdf:type schema:CreativeWork
194 grid-institutes:grid.10392.39 schema:alternateName Institut für Medizinische Psychologie und Verhaltensneurobiologie, Universität Tübingen, Gartenstrasse 29, D-72074, Tübingen, Germany
195 schema:name Institut für Medizinische Psychologie und Verhaltensneurobiologie, Universität Tübingen, Gartenstrasse 29, D-72074, Tübingen, Germany
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...