Trajectory formation of arm movement by cascade neural network model based on minimum torque-change criterion View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-02

AUTHORS

M. Kawato, Y. Maeda, Y. Uno, R. Suzuki

ABSTRACT

We proposed that the trajectory followed by human subject arms tended to minimize the time integral of the square of the rate of change of torque (Uno et al. 1987). This minimum torque-change model predicted and reproduced human multi-joint movement data quite well (Uno et al. 1989). Here, we propose a neural network model for trajectory formation based on the minimum torque-change criterion. Basic ideas of information representation and algorithm are (i) spatial representation of time, (ii) learning of forward dynamics and kinetics model and (iii) relaxation computation based on the acquired model. The model can resolve ill-posed inverse kinematics and inverse dynamics problems for redundant controlled object as well as ill-posed trajectory formation problems. By computer simulation, we show that the model can produce a multi-joint arm trajectory while avoiding obstacles or passing through viapoints. More... »

PAGES

275-288

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00201442

DOI

http://dx.doi.org/10.1007/bf00201442

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050003055

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/2310782


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arm", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Neurological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Movement", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Advanced Telecommunications Research Institute International", 
          "id": "https://www.grid.ac/institutes/grid.418163.9", 
          "name": [
            "Cognitive Processes Department, ATR Auditory and Visual Perception Research Laboratories, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawato", 
        "givenName": "M.", 
        "id": "sg:person.01230705277.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230705277.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maeda", 
        "givenName": "Y.", 
        "id": "sg:person.01226735345.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226735345.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Mathematical Engineering and Information Physics, Faculty of Engineering, University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uno", 
        "givenName": "Y.", 
        "id": "sg:person.014533010621.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014533010621.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Mathematical Engineering and Information Physics, Faculty of Engineering, University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suzuki", 
        "givenName": "R.", 
        "id": "sg:person.013656713222.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013656713222.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00364149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004224027", 
          "https://doi.org/10.1007/bf00364149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00236911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006819429", 
          "https://doi.org/10.1007/bf00236911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00236911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006819429", 
          "https://doi.org/10.1007/bf00236911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2496(79)90020-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008155437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/027836498700600207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009693989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/027836498700600207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009693989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/317314a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016903244", 
          "https://doi.org/10.1038/317314a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/323533a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018367015", 
          "https://doi.org/10.1038/323533a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(88)90007-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019444189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(88)90007-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019444189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/156855389x00127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024865668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00205967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026007297", 
          "https://doi.org/10.1007/bf00205967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00205967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026007297", 
          "https://doi.org/10.1007/bf00205967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-295x.95.1.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029502400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02414903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031805624", 
          "https://doi.org/10.1007/bf02414903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02414903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031805624", 
          "https://doi.org/10.1007/bf02414903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00207290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034550946", 
          "https://doi.org/10.1007/bf00207290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00207290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034550946", 
          "https://doi.org/10.1007/bf00207290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00204593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042513593", 
          "https://doi.org/10.1007/bf00204593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00204593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042513593", 
          "https://doi.org/10.1007/bf00204593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00318008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043387128", 
          "https://doi.org/10.1007/bf00318008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00318008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043387128", 
          "https://doi.org/10.1007/bf00318008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00338819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044991904", 
          "https://doi.org/10.1007/bf00338819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0020279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047705447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-2236(86)90053-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051062970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-2236(86)90053-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051062970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/105.2.331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059437516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/37.1867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061162955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1985.6313371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061793715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3426922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062122126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3344437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062608528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.424729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062624788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.05-07-01688.1985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1080085642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00339943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1080089235", 
          "https://doi.org/10.1007/bf00339943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.05-09-02318.1985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1080091524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.04-11-02738.1984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081781218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.04-11-02745.1984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081781219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cdc.1988.194418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086240559"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990-02", 
    "datePublishedReg": "1990-02-01", 
    "description": "We proposed that the trajectory followed by human subject arms tended to minimize the time integral of the square of the rate of change of torque (Uno et al. 1987). This minimum torque-change model predicted and reproduced human multi-joint movement data quite well (Uno et al. 1989). Here, we propose a neural network model for trajectory formation based on the minimum torque-change criterion. Basic ideas of information representation and algorithm are (i) spatial representation of time, (ii) learning of forward dynamics and kinetics model and (iii) relaxation computation based on the acquired model. The model can resolve ill-posed inverse kinematics and inverse dynamics problems for redundant controlled object as well as ill-posed trajectory formation problems. By computer simulation, we show that the model can produce a multi-joint arm trajectory while avoiding obstacles or passing through viapoints.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00201442", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1081741", 
        "issn": [
          "0340-1200", 
          "1432-0770"
        ], 
        "name": "Biological Cybernetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "name": "Trajectory formation of arm movement by cascade neural network model based on minimum torque-change criterion", 
    "pagination": "275-288", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ee32c63c6ae3f7575d2a25c5079806eb07be5da7809b2b45481d482ebf5754b1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "2310782"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7502533"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00201442"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050003055"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00201442", 
      "https://app.dimensions.ai/details/publication/pub.1050003055"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130831_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00201442"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00201442'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00201442'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00201442'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00201442'


 

This table displays all metadata directly associated to this object as RDF triples.

218 TRIPLES      21 PREDICATES      64 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00201442 schema:about N119c70f8f31340618c6d63f7cb6f65a8
2 N18a45863f84440af80ac387bab9385bc
3 N2f7a7b67a5114bc1b621cd18bf4b2b97
4 N6834e5fca58646eb81a717f3cc19a3bb
5 N6ea9b20f96ca40ddba41f6332fe4ef74
6 Nf25a3156532548d5ad98848751b06590
7 anzsrc-for:08
8 anzsrc-for:0801
9 schema:author N2e82f9e5bf92464698100765d1717fc1
10 schema:citation sg:pub.10.1007/bf00204593
11 sg:pub.10.1007/bf00205967
12 sg:pub.10.1007/bf00207290
13 sg:pub.10.1007/bf00236911
14 sg:pub.10.1007/bf00318008
15 sg:pub.10.1007/bf00338819
16 sg:pub.10.1007/bf00339943
17 sg:pub.10.1007/bf00364149
18 sg:pub.10.1007/bf02414903
19 sg:pub.10.1038/317314a0
20 sg:pub.10.1038/323533a0
21 https://doi.org/10.1016/0022-2496(79)90020-8
22 https://doi.org/10.1016/0166-2236(86)90053-6
23 https://doi.org/10.1016/0893-6080(88)90007-x
24 https://doi.org/10.1037/0033-295x.95.1.49
25 https://doi.org/10.1037/h0020279
26 https://doi.org/10.1093/brain/105.2.331
27 https://doi.org/10.1109/37.1867
28 https://doi.org/10.1109/cdc.1988.194418
29 https://doi.org/10.1109/tsmc.1985.6313371
30 https://doi.org/10.1115/1.3426922
31 https://doi.org/10.1126/science.3344437
32 https://doi.org/10.1126/science.424729
33 https://doi.org/10.1163/156855389x00127
34 https://doi.org/10.1177/027836498700600207
35 https://doi.org/10.1523/jneurosci.04-11-02738.1984
36 https://doi.org/10.1523/jneurosci.04-11-02745.1984
37 https://doi.org/10.1523/jneurosci.05-07-01688.1985
38 https://doi.org/10.1523/jneurosci.05-09-02318.1985
39 schema:datePublished 1990-02
40 schema:datePublishedReg 1990-02-01
41 schema:description We proposed that the trajectory followed by human subject arms tended to minimize the time integral of the square of the rate of change of torque (Uno et al. 1987). This minimum torque-change model predicted and reproduced human multi-joint movement data quite well (Uno et al. 1989). Here, we propose a neural network model for trajectory formation based on the minimum torque-change criterion. Basic ideas of information representation and algorithm are (i) spatial representation of time, (ii) learning of forward dynamics and kinetics model and (iii) relaxation computation based on the acquired model. The model can resolve ill-posed inverse kinematics and inverse dynamics problems for redundant controlled object as well as ill-posed trajectory formation problems. By computer simulation, we show that the model can produce a multi-joint arm trajectory while avoiding obstacles or passing through viapoints.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N32eefa810f02430ca76bac43869d680c
46 N4b464ab68a70425aa7b24b08174c7c85
47 sg:journal.1081741
48 schema:name Trajectory formation of arm movement by cascade neural network model based on minimum torque-change criterion
49 schema:pagination 275-288
50 schema:productId N07f24388ca284b50b8645af53352a597
51 N57d856ccf14e4ce499a7f69796590b17
52 N5f812038dee34636bdc380982f585dd9
53 N8fa07a25437442f8b4b52d36abc979ea
54 Nd24288809819405a82c64f35e2b3e911
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050003055
56 https://doi.org/10.1007/bf00201442
57 schema:sdDatePublished 2019-04-11T14:03
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N7795b1bc931d482785c7d28285b71d51
60 schema:url http://link.springer.com/10.1007/BF00201442
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N07f24388ca284b50b8645af53352a597 schema:name nlm_unique_id
65 schema:value 7502533
66 rdf:type schema:PropertyValue
67 N119c70f8f31340618c6d63f7cb6f65a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Humans
69 rdf:type schema:DefinedTerm
70 N18a45863f84440af80ac387bab9385bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Movement
72 rdf:type schema:DefinedTerm
73 N2bd826492a944a398fa977573c3b2cc2 rdf:first sg:person.014533010621.80
74 rdf:rest N9175412d6b054a92b5c451ad06939009
75 N2e82f9e5bf92464698100765d1717fc1 rdf:first sg:person.01230705277.42
76 rdf:rest N404e152b6ec2450d90e085c80cab2062
77 N2f7a7b67a5114bc1b621cd18bf4b2b97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Arm
79 rdf:type schema:DefinedTerm
80 N32eefa810f02430ca76bac43869d680c schema:issueNumber 4
81 rdf:type schema:PublicationIssue
82 N404e152b6ec2450d90e085c80cab2062 rdf:first sg:person.01226735345.37
83 rdf:rest N2bd826492a944a398fa977573c3b2cc2
84 N4b464ab68a70425aa7b24b08174c7c85 schema:volumeNumber 62
85 rdf:type schema:PublicationVolume
86 N57d856ccf14e4ce499a7f69796590b17 schema:name pubmed_id
87 schema:value 2310782
88 rdf:type schema:PropertyValue
89 N5f812038dee34636bdc380982f585dd9 schema:name dimensions_id
90 schema:value pub.1050003055
91 rdf:type schema:PropertyValue
92 N6834e5fca58646eb81a717f3cc19a3bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Algorithms
94 rdf:type schema:DefinedTerm
95 N6ea9b20f96ca40ddba41f6332fe4ef74 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Models, Neurological
97 rdf:type schema:DefinedTerm
98 N7795b1bc931d482785c7d28285b71d51 schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 N8fa07a25437442f8b4b52d36abc979ea schema:name doi
101 schema:value 10.1007/bf00201442
102 rdf:type schema:PropertyValue
103 N9175412d6b054a92b5c451ad06939009 rdf:first sg:person.013656713222.33
104 rdf:rest rdf:nil
105 Nd24288809819405a82c64f35e2b3e911 schema:name readcube_id
106 schema:value ee32c63c6ae3f7575d2a25c5079806eb07be5da7809b2b45481d482ebf5754b1
107 rdf:type schema:PropertyValue
108 Nf25a3156532548d5ad98848751b06590 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Computer Simulation
110 rdf:type schema:DefinedTerm
111 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
112 schema:name Information and Computing Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
115 schema:name Artificial Intelligence and Image Processing
116 rdf:type schema:DefinedTerm
117 sg:journal.1081741 schema:issn 0340-1200
118 1432-0770
119 schema:name Biological Cybernetics
120 rdf:type schema:Periodical
121 sg:person.01226735345.37 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
122 schema:familyName Maeda
123 schema:givenName Y.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226735345.37
125 rdf:type schema:Person
126 sg:person.01230705277.42 schema:affiliation https://www.grid.ac/institutes/grid.418163.9
127 schema:familyName Kawato
128 schema:givenName M.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230705277.42
130 rdf:type schema:Person
131 sg:person.013656713222.33 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
132 schema:familyName Suzuki
133 schema:givenName R.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013656713222.33
135 rdf:type schema:Person
136 sg:person.014533010621.80 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
137 schema:familyName Uno
138 schema:givenName Y.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014533010621.80
140 rdf:type schema:Person
141 sg:pub.10.1007/bf00204593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042513593
142 https://doi.org/10.1007/bf00204593
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/bf00205967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026007297
145 https://doi.org/10.1007/bf00205967
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/bf00207290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034550946
148 https://doi.org/10.1007/bf00207290
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/bf00236911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006819429
151 https://doi.org/10.1007/bf00236911
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/bf00318008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043387128
154 https://doi.org/10.1007/bf00318008
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/bf00338819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044991904
157 https://doi.org/10.1007/bf00338819
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/bf00339943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1080089235
160 https://doi.org/10.1007/bf00339943
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/bf00364149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004224027
163 https://doi.org/10.1007/bf00364149
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/bf02414903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031805624
166 https://doi.org/10.1007/bf02414903
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/317314a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016903244
169 https://doi.org/10.1038/317314a0
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/323533a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018367015
172 https://doi.org/10.1038/323533a0
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/0022-2496(79)90020-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008155437
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/0166-2236(86)90053-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051062970
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/0893-6080(88)90007-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019444189
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1037/0033-295x.95.1.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029502400
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1037/h0020279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047705447
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1093/brain/105.2.331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059437516
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1109/37.1867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061162955
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1109/cdc.1988.194418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086240559
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1109/tsmc.1985.6313371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061793715
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1115/1.3426922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062122126
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1126/science.3344437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062608528
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1126/science.424729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062624788
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1163/156855389x00127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024865668
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1177/027836498700600207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009693989
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1523/jneurosci.04-11-02738.1984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081781218
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1523/jneurosci.04-11-02745.1984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081781219
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1523/jneurosci.05-07-01688.1985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1080085642
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1523/jneurosci.05-09-02318.1985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1080091524
209 rdf:type schema:CreativeWork
210 https://www.grid.ac/institutes/grid.136593.b schema:alternateName Osaka University
211 schema:name Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, Osaka, Japan
212 rdf:type schema:Organization
213 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
214 schema:name Department of Mathematical Engineering and Information Physics, Faculty of Engineering, University of Tokyo, Tokyo, Japan
215 rdf:type schema:Organization
216 https://www.grid.ac/institutes/grid.418163.9 schema:alternateName Advanced Telecommunications Research Institute International
217 schema:name Cognitive Processes Department, ATR Auditory and Visual Perception Research Laboratories, Kyoto, Japan
218 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...