High-order behaviour in learning gate networks with lateral inhibition View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-01

AUTHORS

E. Blanzieri, F. Grandi, D. Maio

ABSTRACT

In this work we present a neural network model incorporating activity-dependent presynaptic facilitation with multidimensional inputs. The processing unit used is based on a slightly simplified version of the Learning Gate Model proposed by Ciaccia et al. (1992). The network topology integrates a well-known biological neural circuit with a lateral inhibition connection subnet. By means of simulation experiments, we show that the proposed networks exhibit basic and high-order features of associative learning. In particular, overshadowing and blocking are reproduced in the presence of both noise-free and noisy inputs. The role of noise in the development of high-order learning capabilities is also discussed. More... »

PAGES

73-83

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00199139

DOI

http://dx.doi.org/10.1007/bf00199139

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049659391

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/8573655


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Conditioning, Psychological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cybernetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Extinction, Psychological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Habituation, Psychophysiologic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nerve Net", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Inhibition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Detection, Psychological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Synapses", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "C.I.O.C.-C.N.R. and Dipartimento di Elettronica, Informatica e Sistemistica, Universit\u00e0 di Bologna, Viale Risorgimento 2, I-40136, Bologna, Italy", 
          "id": "http://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "C.I.O.C.-C.N.R. and Dipartimento di Elettronica, Informatica e Sistemistica, Universit\u00e0 di Bologna, Viale Risorgimento 2, I-40136, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blanzieri", 
        "givenName": "E.", 
        "id": "sg:person.013033541655.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033541655.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "C.I.O.C.-C.N.R. and Dipartimento di Elettronica, Informatica e Sistemistica, Universit\u00e0 di Bologna, Viale Risorgimento 2, I-40136, Bologna, Italy", 
          "id": "http://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "C.I.O.C.-C.N.R. and Dipartimento di Elettronica, Informatica e Sistemistica, Universit\u00e0 di Bologna, Viale Risorgimento 2, I-40136, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grandi", 
        "givenName": "F.", 
        "id": "sg:person.013114124551.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013114124551.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "C.I.O.C.-C.N.R. and Dipartimento di Elettronica, Informatica e Sistemistica, Universit\u00e0 di Bologna, Viale Risorgimento 2, I-40136, Bologna, Italy", 
          "id": "http://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "C.I.O.C.-C.N.R. and Dipartimento di Elettronica, Informatica e Sistemistica, Universit\u00e0 di Bologna, Viale Risorgimento 2, I-40136, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maio", 
        "givenName": "D.", 
        "id": "sg:person.013075040365.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013075040365.65"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02414889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002561481", 
          "https://doi.org/10.1007/bf02414889"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-01", 
    "datePublishedReg": "1996-01-01", 
    "description": "In this work we present a neural network model incorporating activity-dependent presynaptic facilitation with multidimensional inputs. The processing unit used is based on a slightly simplified version of the Learning Gate Model proposed by Ciaccia et al. (1992). The network topology integrates a well-known biological neural circuit with a lateral inhibition connection subnet. By means of simulation experiments, we show that the proposed networks exhibit basic and high-order features of associative learning. In particular, overshadowing and blocking are reproduced in the presence of both noise-free and noisy inputs. The role of noise in the development of high-order learning capabilities is also discussed.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00199139", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1081741", 
        "issn": [
          "0340-1200", 
          "1432-0770"
        ], 
        "name": "Biological Cybernetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "74"
      }
    ], 
    "keywords": [
      "neural network model", 
      "higher-order features", 
      "biological neural circuits", 
      "processing unit", 
      "learning capabilities", 
      "network topology", 
      "multidimensional input", 
      "network model", 
      "noisy input", 
      "simulation experiments", 
      "gate network", 
      "network", 
      "subnets", 
      "gate model", 
      "input", 
      "learning", 
      "capability", 
      "topology", 
      "model", 
      "lateral inhibition", 
      "features", 
      "noise", 
      "version", 
      "work", 
      "experiments", 
      "et al", 
      "development", 
      "units", 
      "means", 
      "blocking", 
      "circuit", 
      "higher-order behavior", 
      "behavior", 
      "role of noise", 
      "neural circuits", 
      "activity-dependent presynaptic facilitation", 
      "associative learning", 
      "facilitation", 
      "al", 
      "role", 
      "presence", 
      "presynaptic facilitation", 
      "inhibition"
    ], 
    "name": "High-order behaviour in learning gate networks with lateral inhibition", 
    "pagination": "73-83", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049659391"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00199139"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "8573655"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00199139", 
      "https://app.dimensions.ai/details/publication/pub.1049659391"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_280.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00199139"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00199139'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00199139'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00199139'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00199139'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      21 PREDICATES      81 URIs      72 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00199139 schema:about N0ca54e06e91a4983b1bc12be9055ad8f
2 N37be790c7bd743f1af22950ed4e29153
3 N51565a64b6b14f68918bce2d7f845d5f
4 N7249f97f5a4f4e9a961460c31f8b8aa9
5 N79011d4ca0e54339809eb1c755667e53
6 Nace99c527ca549368c53d75e1a3e7af0
7 Nae00409cf0fe4432a27f8277d2bdb40e
8 Nc55c66c8829d445d8f93b2a183f618b3
9 Ne630aaa383db4334ab26ab550ce61c0f
10 Necc7e242422b437db907bff9cbc78ff9
11 Nedcef343b75743ab9bcb273deaf859fb
12 anzsrc-for:08
13 anzsrc-for:0801
14 schema:author N11da8e36a60c4033a23f083c621d844d
15 schema:citation sg:pub.10.1007/bf02414889
16 schema:datePublished 1996-01
17 schema:datePublishedReg 1996-01-01
18 schema:description In this work we present a neural network model incorporating activity-dependent presynaptic facilitation with multidimensional inputs. The processing unit used is based on a slightly simplified version of the Learning Gate Model proposed by Ciaccia et al. (1992). The network topology integrates a well-known biological neural circuit with a lateral inhibition connection subnet. By means of simulation experiments, we show that the proposed networks exhibit basic and high-order features of associative learning. In particular, overshadowing and blocking are reproduced in the presence of both noise-free and noisy inputs. The role of noise in the development of high-order learning capabilities is also discussed.
19 schema:genre article
20 schema:isAccessibleForFree false
21 schema:isPartOf N4d99ab072a1d4057819a04a514bc2a09
22 N661e9620748a4569b2e268bfb7798158
23 sg:journal.1081741
24 schema:keywords activity-dependent presynaptic facilitation
25 al
26 associative learning
27 behavior
28 biological neural circuits
29 blocking
30 capability
31 circuit
32 development
33 et al
34 experiments
35 facilitation
36 features
37 gate model
38 gate network
39 higher-order behavior
40 higher-order features
41 inhibition
42 input
43 lateral inhibition
44 learning
45 learning capabilities
46 means
47 model
48 multidimensional input
49 network
50 network model
51 network topology
52 neural circuits
53 neural network model
54 noise
55 noisy input
56 presence
57 presynaptic facilitation
58 processing unit
59 role
60 role of noise
61 simulation experiments
62 subnets
63 topology
64 units
65 version
66 work
67 schema:name High-order behaviour in learning gate networks with lateral inhibition
68 schema:pagination 73-83
69 schema:productId N7665feae0334446c865792d9f3806f1a
70 N7be7f77cc6254c3d8c93541b9fc53827
71 Nadd19b99da554bdf932b100e83b3b452
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049659391
73 https://doi.org/10.1007/bf00199139
74 schema:sdDatePublished 2022-12-01T06:21
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N833acf88fc924a5aa39cf080993081d8
77 schema:url https://doi.org/10.1007/bf00199139
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N0ca54e06e91a4983b1bc12be9055ad8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Nerve Net
83 rdf:type schema:DefinedTerm
84 N11da8e36a60c4033a23f083c621d844d rdf:first sg:person.013033541655.32
85 rdf:rest Nc08d06cb33c84cafac7b23c7492c3813
86 N37be790c7bd743f1af22950ed4e29153 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Signal Detection, Psychological
88 rdf:type schema:DefinedTerm
89 N4d99ab072a1d4057819a04a514bc2a09 schema:issueNumber 1
90 rdf:type schema:PublicationIssue
91 N51565a64b6b14f68918bce2d7f845d5f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Mathematics
93 rdf:type schema:DefinedTerm
94 N661e9620748a4569b2e268bfb7798158 schema:volumeNumber 74
95 rdf:type schema:PublicationVolume
96 N7249f97f5a4f4e9a961460c31f8b8aa9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Cybernetics
98 rdf:type schema:DefinedTerm
99 N7665feae0334446c865792d9f3806f1a schema:name dimensions_id
100 schema:value pub.1049659391
101 rdf:type schema:PropertyValue
102 N79011d4ca0e54339809eb1c755667e53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Conditioning, Psychological
104 rdf:type schema:DefinedTerm
105 N7be7f77cc6254c3d8c93541b9fc53827 schema:name doi
106 schema:value 10.1007/bf00199139
107 rdf:type schema:PropertyValue
108 N833acf88fc924a5aa39cf080993081d8 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 N945a6727aa774c30bb8a4de3f5469d6b rdf:first sg:person.013075040365.65
111 rdf:rest rdf:nil
112 Nace99c527ca549368c53d75e1a3e7af0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Learning
114 rdf:type schema:DefinedTerm
115 Nadd19b99da554bdf932b100e83b3b452 schema:name pubmed_id
116 schema:value 8573655
117 rdf:type schema:PropertyValue
118 Nae00409cf0fe4432a27f8277d2bdb40e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Extinction, Psychological
120 rdf:type schema:DefinedTerm
121 Nc08d06cb33c84cafac7b23c7492c3813 rdf:first sg:person.013114124551.31
122 rdf:rest N945a6727aa774c30bb8a4de3f5469d6b
123 Nc55c66c8829d445d8f93b2a183f618b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Neural Inhibition
125 rdf:type schema:DefinedTerm
126 Ne630aaa383db4334ab26ab550ce61c0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Synapses
128 rdf:type schema:DefinedTerm
129 Necc7e242422b437db907bff9cbc78ff9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Animals
131 rdf:type schema:DefinedTerm
132 Nedcef343b75743ab9bcb273deaf859fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Habituation, Psychophysiologic
134 rdf:type schema:DefinedTerm
135 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
136 schema:name Information and Computing Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
139 schema:name Artificial Intelligence and Image Processing
140 rdf:type schema:DefinedTerm
141 sg:journal.1081741 schema:issn 0340-1200
142 1432-0770
143 schema:name Biological Cybernetics
144 schema:publisher Springer Nature
145 rdf:type schema:Periodical
146 sg:person.013033541655.32 schema:affiliation grid-institutes:grid.6292.f
147 schema:familyName Blanzieri
148 schema:givenName E.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033541655.32
150 rdf:type schema:Person
151 sg:person.013075040365.65 schema:affiliation grid-institutes:grid.6292.f
152 schema:familyName Maio
153 schema:givenName D.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013075040365.65
155 rdf:type schema:Person
156 sg:person.013114124551.31 schema:affiliation grid-institutes:grid.6292.f
157 schema:familyName Grandi
158 schema:givenName F.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013114124551.31
160 rdf:type schema:Person
161 sg:pub.10.1007/bf02414889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002561481
162 https://doi.org/10.1007/bf02414889
163 rdf:type schema:CreativeWork
164 grid-institutes:grid.6292.f schema:alternateName C.I.O.C.-C.N.R. and Dipartimento di Elettronica, Informatica e Sistemistica, Università di Bologna, Viale Risorgimento 2, I-40136, Bologna, Italy
165 schema:name C.I.O.C.-C.N.R. and Dipartimento di Elettronica, Informatica e Sistemistica, Università di Bologna, Viale Risorgimento 2, I-40136, Bologna, Italy
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...