Endogenous rhythms and chaos in crassulacean acid metabolism View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-08

AUTHORS

Ulrich Lüttge, Friedrich Beck

ABSTRACT

Endogenous free-running regular circadian oscillations of net CO2 exchange in the crassulacean-acidmetabolism (CAM) plant Kalanchoë daigremontiana Hamet et Perrier de la Bâthie under constant external conditions in continuous light have been shown to change to irregular non-predictable (chaotic) time behaviour as irradiance or temperature are raised above a critical level. A model of CAM has been constructed with pools of major metabolites of varying concentrations, flows of metabolites leading to exchange between pools, metabolite transformations determined by chemical reactions, and feedback regulations. The model is described by a system of coupled non-linear differential equations. It shows stable rhythmicity in normal dark-light cycles and in continuous light and, like the K. daigremontiana leaves in the experiments, a change to chaos as irradiance is increased. The maintenance of endogenous oscillations in the model is brought about by a hysteresis switch or beat oscillator between two stable oscillation modes. In CAM these stable modes are vacuolar malate accumulation and remobilization. The model shows that the physical nature of the beat oscillator in the leaves can be explained by the balance between active and passive transport at the tonoplast. More... »

PAGES

28-38

References to SciGraph publications

  • 1987-03. Persistent circadian rhythms in the phosphorylation state of phosphoenolpyruvate carboxylase from Bryophyllum fedtschenkoi leaves and in its sensitivity to inhibition by malate in PLANTA
  • 1989-03. Control of the circadian rhythm of carbon dioxide assimilation in Bryophyllum leaves by exposure to darkness and high carbon dioxide concentrations in PLANTA
  • 1984-09. A dynamic computer model of the metabolic and regulatory processes in Crassulacean acid metabolism in PLANTA
  • 1989-04. Period and phase control by temperature in the circadian rhythm of carbon dioxide fixation in illuminated leaves of Bryophyllum fedtschenkoi in PLANTA
  • 1989-12. Phase resetting of the circadian rhythm of carbon dioxide assimilation inBryophyllum leaves in relation to their malate content following brief exposure to high and low temperatures, darkness and 5% carbon dioxide in PLANTA
  • 1988-12. Temperature effects on malic-acid efflux from the vacuoles and on the carboxylation pathways in crassulacean-acid-metabolism plants in PLANTA
  • 1984-03. Circadian rhythms in Kalanchoë: effects of irradiance and temperature on gas exchange and carbon metabolism in PLANTA
  • 1984-06. Mechanism of passive malic-acid efflux from vacuoles of the CAM plantKalanchoë daigremontiana in THE JOURNAL OF MEMBRANE BIOLOGY
  • 1976-06. Simple mathematical models with very complicated dynamics in NATURE
  • 1988. Cellular and Molecular Bases of Biological Clocks, Models and Mechanisms for Circadian Timekeeping in NONE
  • 1984-01. Circadian rhythms inKalanchoë: the pathway of14CO2 fixation during prolonged light in PLANTA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00198936

    DOI

    http://dx.doi.org/10.1007/bf00198936

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1001903199

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/24178196


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Botanik, Technische Hochschule Darmstadt, Schnittspahnstrasse 3, W-6100, Darmstadt, Federal Republic of Germany", 
              "id": "http://www.grid.ac/institutes/grid.6546.1", 
              "name": [
                "Institut f\u00fcr Botanik, Technische Hochschule Darmstadt, Schnittspahnstrasse 3, W-6100, Darmstadt, Federal Republic of Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "L\u00fcttge", 
            "givenName": "Ulrich", 
            "id": "sg:person.01313336051.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313336051.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Kernphysik, Technische Hochschule Darmstadt, Schlo\u00dfgartenstrasse 9, W-6100, Darmstadt, Federal Republic of Germany", 
              "id": "http://www.grid.ac/institutes/grid.6546.1", 
              "name": [
                "Institut f\u00fcr Kernphysik, Technische Hochschule Darmstadt, Schlo\u00dfgartenstrasse 9, W-6100, Darmstadt, Federal Republic of Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Beck", 
            "givenName": "Friedrich", 
            "id": "sg:person.016116756620.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016116756620.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00951462", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028641809", 
              "https://doi.org/10.1007/bf00951462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00634473", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024953250", 
              "https://doi.org/10.1007/bf00634473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02411411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009506439", 
              "https://doi.org/10.1007/bf02411411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00395034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042353200", 
              "https://doi.org/10.1007/bf00395034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-3742-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047800771", 
              "https://doi.org/10.1007/978-1-4612-3742-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00392613", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028177840", 
              "https://doi.org/10.1007/bf00392613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00403599", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000180433", 
              "https://doi.org/10.1007/bf00403599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00397441", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017644383", 
              "https://doi.org/10.1007/bf00397441"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01868979", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035900109", 
              "https://doi.org/10.1007/bf01868979"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/261459a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007363669", 
              "https://doi.org/10.1038/261459a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00402864", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053448939", 
              "https://doi.org/10.1007/bf00402864"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1992-08", 
        "datePublishedReg": "1992-08-01", 
        "description": "Endogenous free-running regular circadian oscillations of net CO2 exchange in the crassulacean-acidmetabolism (CAM) plant Kalancho\u00eb daigremontiana Hamet et Perrier de la B\u00e2thie under constant external conditions in continuous light have been shown to change to irregular non-predictable (chaotic) time behaviour as irradiance or temperature are raised above a critical level. A model of CAM has been constructed with pools of major metabolites of varying concentrations, flows of metabolites leading to exchange between pools, metabolite transformations determined by chemical reactions, and feedback regulations. The model is described by a system of coupled non-linear differential equations. It shows stable rhythmicity in normal dark-light cycles and in continuous light and, like the K. daigremontiana leaves in the experiments, a change to chaos as irradiance is increased. The maintenance of endogenous oscillations in the model is brought about by a hysteresis switch or beat oscillator between two stable oscillation modes. In CAM these stable modes are vacuolar malate accumulation and remobilization. The model shows that the physical nature of the beat oscillator in the leaves can be explained by the balance between active and passive transport at the tonoplast.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf00198936", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1054035", 
            "issn": [
              "0032-0935", 
              "1432-2048"
            ], 
            "name": "Planta", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "188"
          }
        ], 
        "keywords": [
          "non-linear differential equations", 
          "differential equations", 
          "time behavior", 
          "oscillation modes", 
          "hysteresis switch", 
          "stable modes", 
          "physical nature", 
          "oscillator", 
          "oscillations", 
          "constant external conditions", 
          "equations", 
          "model", 
          "chaos", 
          "stable oscillation modes", 
          "chemical reactions", 
          "external conditions", 
          "flow", 
          "critical level", 
          "mode", 
          "irradiance", 
          "system", 
          "transformation", 
          "transport", 
          "conditions", 
          "behavior", 
          "temperature", 
          "experiments", 
          "exchange", 
          "switch", 
          "nature", 
          "endogenous oscillations", 
          "circadian oscillations", 
          "light", 
          "feedback regulation", 
          "balance", 
          "CAM", 
          "passive transport", 
          "cycle", 
          "levels", 
          "pool", 
          "changes", 
          "maintenance", 
          "concentration", 
          "reaction", 
          "net CO2 exchange", 
          "Hamet et Perrier de la B\u00e2thie", 
          "Perrier de la B\u00e2thie", 
          "continuous light", 
          "flow of metabolites", 
          "K. daigremontiana", 
          "malate accumulation", 
          "crassulacean acid metabolism", 
          "CO2 exchange", 
          "metabolite transformation", 
          "dark-light cycle", 
          "endogenous rhythm", 
          "rhythm", 
          "acid metabolism", 
          "Kalancho\u00eb", 
          "metabolites", 
          "regulation", 
          "daigremontiana", 
          "accumulation", 
          "beat oscillator", 
          "leaves", 
          "tonoplast", 
          "regular circadian oscillations", 
          "rhythmicity", 
          "remobilization", 
          "metabolism", 
          "major metabolite"
        ], 
        "name": "Endogenous rhythms and chaos in crassulacean acid metabolism", 
        "pagination": "28-38", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1001903199"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00198936"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "24178196"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00198936", 
          "https://app.dimensions.ai/details/publication/pub.1001903199"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_245.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf00198936"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00198936'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00198936'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00198936'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00198936'


     

    This table displays all metadata directly associated to this object as RDF triples.

    185 TRIPLES      21 PREDICATES      108 URIs      89 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00198936 schema:about anzsrc-for:06
    2 anzsrc-for:0607
    3 schema:author N1b836cc1845f437a97a25649acf7d52d
    4 schema:citation sg:pub.10.1007/978-1-4612-3742-6
    5 sg:pub.10.1007/bf00392613
    6 sg:pub.10.1007/bf00395034
    7 sg:pub.10.1007/bf00397441
    8 sg:pub.10.1007/bf00402864
    9 sg:pub.10.1007/bf00403599
    10 sg:pub.10.1007/bf00634473
    11 sg:pub.10.1007/bf00951462
    12 sg:pub.10.1007/bf01868979
    13 sg:pub.10.1007/bf02411411
    14 sg:pub.10.1038/261459a0
    15 schema:datePublished 1992-08
    16 schema:datePublishedReg 1992-08-01
    17 schema:description Endogenous free-running regular circadian oscillations of net CO2 exchange in the crassulacean-acidmetabolism (CAM) plant Kalanchoë daigremontiana Hamet et Perrier de la Bâthie under constant external conditions in continuous light have been shown to change to irregular non-predictable (chaotic) time behaviour as irradiance or temperature are raised above a critical level. A model of CAM has been constructed with pools of major metabolites of varying concentrations, flows of metabolites leading to exchange between pools, metabolite transformations determined by chemical reactions, and feedback regulations. The model is described by a system of coupled non-linear differential equations. It shows stable rhythmicity in normal dark-light cycles and in continuous light and, like the K. daigremontiana leaves in the experiments, a change to chaos as irradiance is increased. The maintenance of endogenous oscillations in the model is brought about by a hysteresis switch or beat oscillator between two stable oscillation modes. In CAM these stable modes are vacuolar malate accumulation and remobilization. The model shows that the physical nature of the beat oscillator in the leaves can be explained by the balance between active and passive transport at the tonoplast.
    18 schema:genre article
    19 schema:isAccessibleForFree false
    20 schema:isPartOf N2c52c61e09144effa450b7c26b177dfd
    21 N337de301892f46f3a66016ff31d56266
    22 sg:journal.1054035
    23 schema:keywords CAM
    24 CO2 exchange
    25 Hamet et Perrier de la Bâthie
    26 K. daigremontiana
    27 Kalanchoë
    28 Perrier de la Bâthie
    29 accumulation
    30 acid metabolism
    31 balance
    32 beat oscillator
    33 behavior
    34 changes
    35 chaos
    36 chemical reactions
    37 circadian oscillations
    38 concentration
    39 conditions
    40 constant external conditions
    41 continuous light
    42 crassulacean acid metabolism
    43 critical level
    44 cycle
    45 daigremontiana
    46 dark-light cycle
    47 differential equations
    48 endogenous oscillations
    49 endogenous rhythm
    50 equations
    51 exchange
    52 experiments
    53 external conditions
    54 feedback regulation
    55 flow
    56 flow of metabolites
    57 hysteresis switch
    58 irradiance
    59 leaves
    60 levels
    61 light
    62 maintenance
    63 major metabolite
    64 malate accumulation
    65 metabolism
    66 metabolite transformation
    67 metabolites
    68 mode
    69 model
    70 nature
    71 net CO2 exchange
    72 non-linear differential equations
    73 oscillation modes
    74 oscillations
    75 oscillator
    76 passive transport
    77 physical nature
    78 pool
    79 reaction
    80 regular circadian oscillations
    81 regulation
    82 remobilization
    83 rhythm
    84 rhythmicity
    85 stable modes
    86 stable oscillation modes
    87 switch
    88 system
    89 temperature
    90 time behavior
    91 tonoplast
    92 transformation
    93 transport
    94 schema:name Endogenous rhythms and chaos in crassulacean acid metabolism
    95 schema:pagination 28-38
    96 schema:productId N7ae6f7c283644ed2922e439011a4cfe3
    97 Nac0cd1944a974deea32956a9d7cdd5a6
    98 Nba6e3ec1da114de69073e55482f661e5
    99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001903199
    100 https://doi.org/10.1007/bf00198936
    101 schema:sdDatePublished 2022-12-01T06:20
    102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    103 schema:sdPublisher N924ecaaac27f493da0f35a13d8e6555b
    104 schema:url https://doi.org/10.1007/bf00198936
    105 sgo:license sg:explorer/license/
    106 sgo:sdDataset articles
    107 rdf:type schema:ScholarlyArticle
    108 N1b836cc1845f437a97a25649acf7d52d rdf:first sg:person.01313336051.07
    109 rdf:rest N54c661128ad34748beb3614d9534c20d
    110 N2c52c61e09144effa450b7c26b177dfd schema:volumeNumber 188
    111 rdf:type schema:PublicationVolume
    112 N337de301892f46f3a66016ff31d56266 schema:issueNumber 1
    113 rdf:type schema:PublicationIssue
    114 N54c661128ad34748beb3614d9534c20d rdf:first sg:person.016116756620.47
    115 rdf:rest rdf:nil
    116 N7ae6f7c283644ed2922e439011a4cfe3 schema:name dimensions_id
    117 schema:value pub.1001903199
    118 rdf:type schema:PropertyValue
    119 N924ecaaac27f493da0f35a13d8e6555b schema:name Springer Nature - SN SciGraph project
    120 rdf:type schema:Organization
    121 Nac0cd1944a974deea32956a9d7cdd5a6 schema:name pubmed_id
    122 schema:value 24178196
    123 rdf:type schema:PropertyValue
    124 Nba6e3ec1da114de69073e55482f661e5 schema:name doi
    125 schema:value 10.1007/bf00198936
    126 rdf:type schema:PropertyValue
    127 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Biological Sciences
    129 rdf:type schema:DefinedTerm
    130 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    131 schema:name Plant Biology
    132 rdf:type schema:DefinedTerm
    133 sg:journal.1054035 schema:issn 0032-0935
    134 1432-2048
    135 schema:name Planta
    136 schema:publisher Springer Nature
    137 rdf:type schema:Periodical
    138 sg:person.01313336051.07 schema:affiliation grid-institutes:grid.6546.1
    139 schema:familyName Lüttge
    140 schema:givenName Ulrich
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313336051.07
    142 rdf:type schema:Person
    143 sg:person.016116756620.47 schema:affiliation grid-institutes:grid.6546.1
    144 schema:familyName Beck
    145 schema:givenName Friedrich
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016116756620.47
    147 rdf:type schema:Person
    148 sg:pub.10.1007/978-1-4612-3742-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047800771
    149 https://doi.org/10.1007/978-1-4612-3742-6
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/bf00392613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028177840
    152 https://doi.org/10.1007/bf00392613
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/bf00395034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042353200
    155 https://doi.org/10.1007/bf00395034
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/bf00397441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017644383
    158 https://doi.org/10.1007/bf00397441
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/bf00402864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053448939
    161 https://doi.org/10.1007/bf00402864
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/bf00403599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000180433
    164 https://doi.org/10.1007/bf00403599
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/bf00634473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024953250
    167 https://doi.org/10.1007/bf00634473
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/bf00951462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028641809
    170 https://doi.org/10.1007/bf00951462
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/bf01868979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035900109
    173 https://doi.org/10.1007/bf01868979
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/bf02411411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009506439
    176 https://doi.org/10.1007/bf02411411
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/261459a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007363669
    179 https://doi.org/10.1038/261459a0
    180 rdf:type schema:CreativeWork
    181 grid-institutes:grid.6546.1 schema:alternateName Institut für Botanik, Technische Hochschule Darmstadt, Schnittspahnstrasse 3, W-6100, Darmstadt, Federal Republic of Germany
    182 Institut für Kernphysik, Technische Hochschule Darmstadt, Schloßgartenstrasse 9, W-6100, Darmstadt, Federal Republic of Germany
    183 schema:name Institut für Botanik, Technische Hochschule Darmstadt, Schnittspahnstrasse 3, W-6100, Darmstadt, Federal Republic of Germany
    184 Institut für Kernphysik, Technische Hochschule Darmstadt, Schloßgartenstrasse 9, W-6100, Darmstadt, Federal Republic of Germany
    185 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...