Rapid synchronization through fast threshold modulation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-03

AUTHORS

David Somers, Nancy Kopell

ABSTRACT

Synchronization properties of locally coupled neural oscillators were investigated analytically and by computer simulation. When coupled in a manner that mimics excitatory chemical synapses, oscillators having more than one time scale (relaxation oscillators) are shown to approach synchrony using mechanisms very different from that of oscillators with a more sinusoidal waveform. The relaxation oscillators make critical use of fast modulations of their thresholds, leading to a rate of synchronization relatively independent of coupling strength within some basin of attraction; this rate is faster for oscillators that have conductance-based features than for neural caricatures such as the FitzHugh-Nagumo equations that lack such features. Computer simulations of one-dimensional arrays show that oscillators in the relaxation regime synchronize much more rapidly than oscillators with the same equations whose parameters have been modulated to yield a more sinusoidal waveform. We present a heuristic explanation of this effect based on properties of the coupling mechanisms that can affect the way the synchronization scales with array length. These results suggest that the emergent synchronization behavior of oscillating neural networks can be dramatically influenced by the intrinsic properties of the network components. Possible implications for perceptual feature binding and attention are discussed. More... »

PAGES

393-407

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00198772

DOI

http://dx.doi.org/10.1007/bf00198772

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007511494

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/8476980


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cybernetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Neurological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nerve Net", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oscillometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensory Thresholds", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Department of Cognitive and Neural Systems and Department of Mathematics, Boston University, 111 Cummington Street, 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Somers", 
        "givenName": "David", 
        "id": "sg:person.01146070413.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146070413.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Department of Cognitive and Neural Systems and Department of Mathematics, Boston University, 111 Cummington Street, 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kopell", 
        "givenName": "Nancy", 
        "id": "sg:person.01244301604.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244301604.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.86.5.1698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003412871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1991.3.2.155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010291788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(91)90054-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015021328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(91)90054-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015021328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.65.4.884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016305887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00160535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016451817", 
          "https://doi.org/10.1007/bf00160535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/338334a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017767690", 
          "https://doi.org/10.1038/338334a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1020867171", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-9047-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020867171", 
          "https://doi.org/10.1007/978-1-4615-9047-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-9047-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020867171", 
          "https://doi.org/10.1007/978-1-4615-9047-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0096-1523.8.2.194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027328746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00344744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028322284", 
          "https://doi.org/10.1007/bf00344744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00327046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028503470", 
          "https://doi.org/10.1007/bf00327046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-7758-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029158190", 
          "https://doi.org/10.1007/978-94-009-7758-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-7758-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029158190", 
          "https://doi.org/10.1007/978-94-009-7758-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1990.2.4.458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030963651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00337113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033806149", 
          "https://doi.org/10.1007/bf00337113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.60.3.758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034806229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-0285(80)90005-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035402938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(81)84782-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035440610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(61)86902-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039086367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.81.14.4586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039534367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(91)90041-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042586855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(91)90041-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042586855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00202899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043727259", 
          "https://doi.org/10.1007/bf00202899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00202899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043727259", 
          "https://doi.org/10.1007/bf00202899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.89.6.2471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044751121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00276558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050929887", 
          "https://doi.org/10.1007/bf00276558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00276558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050929887", 
          "https://doi.org/10.1007/bf00276558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00364154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052700723", 
          "https://doi.org/10.1007/bf00364154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160390504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052879163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160390504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052879163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.87.18.7200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053175556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00203634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053287536", 
          "https://doi.org/10.1007/bf00203634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00203634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053287536", 
          "https://doi.org/10.1007/bf00203634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0291-78", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056497395", 
          "https://doi.org/10.1038/scientificamerican0291-78"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.45.3516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060485014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.45.3516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060485014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jrproc.1962.288235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061315446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0150009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062840785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0150062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062840838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0150098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062840874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0515019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062847585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josa.58.001133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065150923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.07-07-02113.1987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079561281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00340335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083278936", 
          "https://doi.org/10.1007/bf00340335"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1993-03", 
    "datePublishedReg": "1993-03-01", 
    "description": "Synchronization properties of locally coupled neural oscillators were investigated analytically and by computer simulation. When coupled in a manner that mimics excitatory chemical synapses, oscillators having more than one time scale (relaxation oscillators) are shown to approach synchrony using mechanisms very different from that of oscillators with a more sinusoidal waveform. The relaxation oscillators make critical use of fast modulations of their thresholds, leading to a rate of synchronization relatively independent of coupling strength within some basin of attraction; this rate is faster for oscillators that have conductance-based features than for neural caricatures such as the FitzHugh-Nagumo equations that lack such features. Computer simulations of one-dimensional arrays show that oscillators in the relaxation regime synchronize much more rapidly than oscillators with the same equations whose parameters have been modulated to yield a more sinusoidal waveform. We present a heuristic explanation of this effect based on properties of the coupling mechanisms that can affect the way the synchronization scales with array length. These results suggest that the emergent synchronization behavior of oscillating neural networks can be dramatically influenced by the intrinsic properties of the network components. Possible implications for perceptual feature binding and attention are discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00198772", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2547588", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1081741", 
        "issn": [
          "0340-1200", 
          "1432-0770"
        ], 
        "name": "Biological Cybernetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "68"
      }
    ], 
    "name": "Rapid synchronization through fast threshold modulation", 
    "pagination": "393-407", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "23c78010bea6828b59dbb9b6ab6550e075523a6d1eae660626f4ee393052fe4c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "8476980"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7502533"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00198772"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007511494"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00198772", 
      "https://app.dimensions.ai/details/publication/pub.1007511494"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130793_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00198772"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00198772'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00198772'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00198772'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00198772'


 

This table displays all metadata directly associated to this object as RDF triples.

229 TRIPLES      21 PREDICATES      73 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00198772 schema:about N1d64eaaecd7f4a5d8c2e33853f18a54d
2 N50b30769158a48ceba08585cb46b225a
3 N74f80fa8ca474fc78f16338aafa91628
4 N785f4ccc98094a8dadc1590c4ab97586
5 Nb732c81bd9f14e348b67421bb1c537e0
6 Nec7b912789464420bad078a70f9df6de
7 Nf6f5da856f5f41ef80c3685ed420f923
8 anzsrc-for:08
9 anzsrc-for:0801
10 schema:author N5d94876f48ca46eaabb11d651aa597a5
11 schema:citation sg:pub.10.1007/978-1-4615-9047-7
12 sg:pub.10.1007/978-94-009-7758-7
13 sg:pub.10.1007/bf00160535
14 sg:pub.10.1007/bf00202899
15 sg:pub.10.1007/bf00203634
16 sg:pub.10.1007/bf00276558
17 sg:pub.10.1007/bf00327046
18 sg:pub.10.1007/bf00337113
19 sg:pub.10.1007/bf00340335
20 sg:pub.10.1007/bf00344744
21 sg:pub.10.1007/bf00364154
22 sg:pub.10.1038/338334a0
23 sg:pub.10.1038/scientificamerican0291-78
24 https://app.dimensions.ai/details/publication/pub.1020867171
25 https://doi.org/10.1002/cpa.3160390504
26 https://doi.org/10.1016/0010-0285(80)90005-5
27 https://doi.org/10.1016/0167-2789(91)90054-d
28 https://doi.org/10.1016/0893-6080(91)90041-3
29 https://doi.org/10.1016/s0006-3495(61)86902-6
30 https://doi.org/10.1016/s0006-3495(81)84782-0
31 https://doi.org/10.1037/0096-1523.8.2.194
32 https://doi.org/10.1073/pnas.60.3.758
33 https://doi.org/10.1073/pnas.65.4.884
34 https://doi.org/10.1073/pnas.81.14.4586
35 https://doi.org/10.1073/pnas.86.5.1698
36 https://doi.org/10.1073/pnas.87.18.7200
37 https://doi.org/10.1073/pnas.89.6.2471
38 https://doi.org/10.1103/physreva.45.3516
39 https://doi.org/10.1109/jrproc.1962.288235
40 https://doi.org/10.1137/0150009
41 https://doi.org/10.1137/0150062
42 https://doi.org/10.1137/0150098
43 https://doi.org/10.1137/0515019
44 https://doi.org/10.1162/neco.1990.2.4.458
45 https://doi.org/10.1162/neco.1991.3.2.155
46 https://doi.org/10.1364/josa.58.001133
47 https://doi.org/10.1523/jneurosci.07-07-02113.1987
48 schema:datePublished 1993-03
49 schema:datePublishedReg 1993-03-01
50 schema:description Synchronization properties of locally coupled neural oscillators were investigated analytically and by computer simulation. When coupled in a manner that mimics excitatory chemical synapses, oscillators having more than one time scale (relaxation oscillators) are shown to approach synchrony using mechanisms very different from that of oscillators with a more sinusoidal waveform. The relaxation oscillators make critical use of fast modulations of their thresholds, leading to a rate of synchronization relatively independent of coupling strength within some basin of attraction; this rate is faster for oscillators that have conductance-based features than for neural caricatures such as the FitzHugh-Nagumo equations that lack such features. Computer simulations of one-dimensional arrays show that oscillators in the relaxation regime synchronize much more rapidly than oscillators with the same equations whose parameters have been modulated to yield a more sinusoidal waveform. We present a heuristic explanation of this effect based on properties of the coupling mechanisms that can affect the way the synchronization scales with array length. These results suggest that the emergent synchronization behavior of oscillating neural networks can be dramatically influenced by the intrinsic properties of the network components. Possible implications for perceptual feature binding and attention are discussed.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree false
54 schema:isPartOf N5c55d092e1d549d8bab7abefa9c15c59
55 Ndf1d28cef9404ad4ae24be2835cec064
56 sg:journal.1081741
57 schema:name Rapid synchronization through fast threshold modulation
58 schema:pagination 393-407
59 schema:productId N01a5617dec3346c9ba5e97a644bd2339
60 N285bdce767c84b9ab35e19969f6c141e
61 N788d292aca27411ea1da3d6e0e1b8896
62 N92e027bb76964934821a4ef30655b355
63 Nabcdbb71194147cf94a2c9b8e288fd2b
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007511494
65 https://doi.org/10.1007/bf00198772
66 schema:sdDatePublished 2019-04-11T13:48
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Na5cef0cdad30425db06bcd27438f85e7
69 schema:url http://link.springer.com/10.1007/BF00198772
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N01a5617dec3346c9ba5e97a644bd2339 schema:name dimensions_id
74 schema:value pub.1007511494
75 rdf:type schema:PropertyValue
76 N1d64eaaecd7f4a5d8c2e33853f18a54d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Nerve Net
78 rdf:type schema:DefinedTerm
79 N285bdce767c84b9ab35e19969f6c141e schema:name readcube_id
80 schema:value 23c78010bea6828b59dbb9b6ab6550e075523a6d1eae660626f4ee393052fe4c
81 rdf:type schema:PropertyValue
82 N50b30769158a48ceba08585cb46b225a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Oscillometry
84 rdf:type schema:DefinedTerm
85 N5c55d092e1d549d8bab7abefa9c15c59 schema:volumeNumber 68
86 rdf:type schema:PublicationVolume
87 N5d94876f48ca46eaabb11d651aa597a5 rdf:first sg:person.01146070413.11
88 rdf:rest Nee82235a784f4398a2fdd4eb15c53a48
89 N74f80fa8ca474fc78f16338aafa91628 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Computer Simulation
91 rdf:type schema:DefinedTerm
92 N785f4ccc98094a8dadc1590c4ab97586 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Models, Neurological
94 rdf:type schema:DefinedTerm
95 N788d292aca27411ea1da3d6e0e1b8896 schema:name doi
96 schema:value 10.1007/bf00198772
97 rdf:type schema:PropertyValue
98 N92e027bb76964934821a4ef30655b355 schema:name nlm_unique_id
99 schema:value 7502533
100 rdf:type schema:PropertyValue
101 Na5cef0cdad30425db06bcd27438f85e7 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 Nabcdbb71194147cf94a2c9b8e288fd2b schema:name pubmed_id
104 schema:value 8476980
105 rdf:type schema:PropertyValue
106 Nb732c81bd9f14e348b67421bb1c537e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Sensory Thresholds
108 rdf:type schema:DefinedTerm
109 Ndf1d28cef9404ad4ae24be2835cec064 schema:issueNumber 5
110 rdf:type schema:PublicationIssue
111 Nec7b912789464420bad078a70f9df6de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Humans
113 rdf:type schema:DefinedTerm
114 Nee82235a784f4398a2fdd4eb15c53a48 rdf:first sg:person.01244301604.43
115 rdf:rest rdf:nil
116 Nf6f5da856f5f41ef80c3685ed420f923 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Cybernetics
118 rdf:type schema:DefinedTerm
119 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
120 schema:name Information and Computing Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
123 schema:name Artificial Intelligence and Image Processing
124 rdf:type schema:DefinedTerm
125 sg:grant.2547588 http://pending.schema.org/fundedItem sg:pub.10.1007/bf00198772
126 rdf:type schema:MonetaryGrant
127 sg:journal.1081741 schema:issn 0340-1200
128 1432-0770
129 schema:name Biological Cybernetics
130 rdf:type schema:Periodical
131 sg:person.01146070413.11 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
132 schema:familyName Somers
133 schema:givenName David
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146070413.11
135 rdf:type schema:Person
136 sg:person.01244301604.43 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
137 schema:familyName Kopell
138 schema:givenName Nancy
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244301604.43
140 rdf:type schema:Person
141 sg:pub.10.1007/978-1-4615-9047-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020867171
142 https://doi.org/10.1007/978-1-4615-9047-7
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/978-94-009-7758-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029158190
145 https://doi.org/10.1007/978-94-009-7758-7
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/bf00160535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016451817
148 https://doi.org/10.1007/bf00160535
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/bf00202899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043727259
151 https://doi.org/10.1007/bf00202899
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/bf00203634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053287536
154 https://doi.org/10.1007/bf00203634
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/bf00276558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050929887
157 https://doi.org/10.1007/bf00276558
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/bf00327046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028503470
160 https://doi.org/10.1007/bf00327046
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/bf00337113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033806149
163 https://doi.org/10.1007/bf00337113
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/bf00340335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083278936
166 https://doi.org/10.1007/bf00340335
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/bf00344744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028322284
169 https://doi.org/10.1007/bf00344744
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/bf00364154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052700723
172 https://doi.org/10.1007/bf00364154
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/338334a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017767690
175 https://doi.org/10.1038/338334a0
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/scientificamerican0291-78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056497395
178 https://doi.org/10.1038/scientificamerican0291-78
179 rdf:type schema:CreativeWork
180 https://app.dimensions.ai/details/publication/pub.1020867171 schema:CreativeWork
181 https://doi.org/10.1002/cpa.3160390504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052879163
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/0010-0285(80)90005-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035402938
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/0167-2789(91)90054-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1015021328
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/0893-6080(91)90041-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042586855
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/s0006-3495(61)86902-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039086367
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/s0006-3495(81)84782-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035440610
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1037/0096-1523.8.2.194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027328746
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1073/pnas.60.3.758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034806229
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1073/pnas.65.4.884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016305887
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1073/pnas.81.14.4586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039534367
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1073/pnas.86.5.1698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003412871
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1073/pnas.87.18.7200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053175556
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1073/pnas.89.6.2471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044751121
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physreva.45.3516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060485014
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/jrproc.1962.288235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061315446
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1137/0150009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062840785
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1137/0150062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062840838
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1137/0150098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062840874
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1137/0515019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062847585
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1162/neco.1990.2.4.458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030963651
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1162/neco.1991.3.2.155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010291788
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1364/josa.58.001133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065150923
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1523/jneurosci.07-07-02113.1987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079561281
226 rdf:type schema:CreativeWork
227 https://www.grid.ac/institutes/grid.189504.1 schema:alternateName Boston University
228 schema:name Department of Cognitive and Neural Systems and Department of Mathematics, Boston University, 111 Cummington Street, 02215, Boston, MA, USA
229 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...