Ontology type: schema:ScholarlyArticle
1990-06
AUTHORSVincent T. Wagner, Mauro Cresti, Antonio Tiezzi, Paolo Salvatici
ABSTRACTThe vegetative nucleus (VN) of Nicotiana tabacum L. has been qualitatively and quantitatively studied in fresh, hydrated, and activated pollen. Techniques included the use of optical sectioning by confocal scanning laser microscopy to obtain volume and surface area measurements, and stereoscopic pairs; and freeze-etch electron microscopy to estimate the frequency of nuclear pores per μm2 in the vegetative nucleus. Several morphological changes were observed to occur in pollen grain nuclei during the early processes of tube growth. In freshly dehisced pollen grain, the vegetative and generative nuclei were side by side, but following hydration and activation of the grain, the elongated generative nucleus became partially surrounded by the vegetative nucleus. It was found that during hydration, the surface area of the vegetative nucleus increased and there was a decrease in the frequency of nuclear pores. The calculated total number of pores remained similar. After activation and pollen-tube growth, the vegetative nucleus retained the same surface area as in the hydrated state but the frequency of nuclear pores decreased; therefore, the calculated total number of pores was significantly lowered. When considered alongside complementary biochemical data, these morphological results indicate that RNA production in the vegetative nucleus decreases following germination. More... »
PAGES304-309
http://scigraph.springernature.com/pub.10.1007/bf00195880
DOIhttp://dx.doi.org/10.1007/bf00195880
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1003939541
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/24196806
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Agricultural and Veterinary Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Plant Biology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0703",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Crop and Pasture Production",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Dipartimento di Biologia Ambientale, Universita di Siena, I-53100, Siena, Italy",
"id": "http://www.grid.ac/institutes/grid.9024.f",
"name": [
"Dipartimento di Biologia Ambientale, Universita di Siena, I-53100, Siena, Italy"
],
"type": "Organization"
},
"familyName": "Wagner",
"givenName": "Vincent T.",
"id": "sg:person.01102353240.55",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102353240.55"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Dipartimento di Biologia Ambientale, Universita di Siena, I-53100, Siena, Italy",
"id": "http://www.grid.ac/institutes/grid.9024.f",
"name": [
"Dipartimento di Biologia Ambientale, Universita di Siena, I-53100, Siena, Italy"
],
"type": "Organization"
},
"familyName": "Cresti",
"givenName": "Mauro",
"id": "sg:person.01143621702.15",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143621702.15"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Dipartimento di Biologia Ambientale, Universita di Siena, I-53100, Siena, Italy",
"id": "http://www.grid.ac/institutes/grid.9024.f",
"name": [
"Dipartimento di Biologia Ambientale, Universita di Siena, I-53100, Siena, Italy"
],
"type": "Organization"
},
"familyName": "Tiezzi",
"givenName": "Antonio",
"id": "sg:person.01203605146.73",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203605146.73"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Dipartimento di Biologia Evolutiva, Universita di Siena, I-53100, Siena, Italy",
"id": "http://www.grid.ac/institutes/grid.9024.f",
"name": [
"Dipartimento di Biologia Evolutiva, Universita di Siena, I-53100, Siena, Italy"
],
"type": "Organization"
},
"familyName": "Salvatici",
"givenName": "Paolo",
"id": "sg:person.01135772237.24",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135772237.24"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf00195587",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009635437",
"https://doi.org/10.1007/bf00195587"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01281025",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001626995",
"https://doi.org/10.1007/bf01281025"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01291154",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038945179",
"https://doi.org/10.1007/bf01291154"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02860839",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049889395",
"https://doi.org/10.1007/bf02860839"
],
"type": "CreativeWork"
}
],
"datePublished": "1990-06",
"datePublishedReg": "1990-06-01",
"description": "The vegetative nucleus (VN) of Nicotiana tabacum L. has been qualitatively and quantitatively studied in fresh, hydrated, and activated pollen. Techniques included the use of optical sectioning by confocal scanning laser microscopy to obtain volume and surface area measurements, and stereoscopic pairs; and freeze-etch electron microscopy to estimate the frequency of nuclear pores per \u03bcm2 in the vegetative nucleus. Several morphological changes were observed to occur in pollen grain nuclei during the early processes of tube growth. In freshly dehisced pollen grain, the vegetative and generative nuclei were side by side, but following hydration and activation of the grain, the elongated generative nucleus became partially surrounded by the vegetative nucleus. It was found that during hydration, the surface area of the vegetative nucleus increased and there was a decrease in the frequency of nuclear pores. The calculated total number of pores remained similar. After activation and pollen-tube growth, the vegetative nucleus retained the same surface area as in the hydrated state but the frequency of nuclear pores decreased; therefore, the calculated total number of pores was significantly lowered. When considered alongside complementary biochemical data, these morphological results indicate that RNA production in the vegetative nucleus decreases following germination.",
"genre": "article",
"id": "sg:pub.10.1007/bf00195880",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1054035",
"issn": [
"0032-0935",
"1432-2048"
],
"name": "Planta",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "181"
}
],
"keywords": [
"pollen-grain nuclei",
"complementary biochemical data",
"nucleus decreases",
"freeze-etch electron microscopy",
"electron microscopy",
"scanning laser microscopy",
"surface area measurements",
"nucleus",
"confocal scanning laser microscopy",
"microscopy",
"laser microscopy",
"hydrated state",
"stereoscopic pairs",
"frequency",
"same surface area",
"area measurements",
"grain nuclei",
"measurements",
"nuclear pores",
"state",
"surface area",
"grains",
"pores",
"pairs",
"technique",
"morphological results",
"decrease",
"volume",
"side",
"process",
"hydration",
"total number",
"results",
"number",
"growth",
"conditions",
"changes",
"morphological changes",
"data",
"early process",
"production",
"tobacco pollen",
"use",
"area",
"Nicotiana tabacum L.",
"tabacum L.",
"vegetative nucleus",
"activation",
"pollen grains",
"generative nucleus",
"biochemical data",
"L.",
"RNA production",
"tube growth",
"pollen",
"germination",
"pollen tube growth"
],
"name": "Changes in volume, surface area, and frequency of nuclear pores on the vegetative nucleus of tobacco pollen in fresh, hydrated, and activated conditions",
"pagination": "304-309",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1003939541"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf00195880"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"24196806"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf00195880",
"https://app.dimensions.ai/details/publication/pub.1003939541"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:51",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_236.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf00195880"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00195880'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00195880'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00195880'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00195880'
This table displays all metadata directly associated to this object as RDF triples.
165 TRIPLES
21 PREDICATES
89 URIs
75 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf00195880 | schema:about | anzsrc-for:06 |
2 | ″ | ″ | anzsrc-for:0607 |
3 | ″ | ″ | anzsrc-for:07 |
4 | ″ | ″ | anzsrc-for:0703 |
5 | ″ | schema:author | Na011e9ae0e3d41d7ad73a3d174197663 |
6 | ″ | schema:citation | sg:pub.10.1007/bf00195587 |
7 | ″ | ″ | sg:pub.10.1007/bf01281025 |
8 | ″ | ″ | sg:pub.10.1007/bf01291154 |
9 | ″ | ″ | sg:pub.10.1007/bf02860839 |
10 | ″ | schema:datePublished | 1990-06 |
11 | ″ | schema:datePublishedReg | 1990-06-01 |
12 | ″ | schema:description | The vegetative nucleus (VN) of Nicotiana tabacum L. has been qualitatively and quantitatively studied in fresh, hydrated, and activated pollen. Techniques included the use of optical sectioning by confocal scanning laser microscopy to obtain volume and surface area measurements, and stereoscopic pairs; and freeze-etch electron microscopy to estimate the frequency of nuclear pores per μm2 in the vegetative nucleus. Several morphological changes were observed to occur in pollen grain nuclei during the early processes of tube growth. In freshly dehisced pollen grain, the vegetative and generative nuclei were side by side, but following hydration and activation of the grain, the elongated generative nucleus became partially surrounded by the vegetative nucleus. It was found that during hydration, the surface area of the vegetative nucleus increased and there was a decrease in the frequency of nuclear pores. The calculated total number of pores remained similar. After activation and pollen-tube growth, the vegetative nucleus retained the same surface area as in the hydrated state but the frequency of nuclear pores decreased; therefore, the calculated total number of pores was significantly lowered. When considered alongside complementary biochemical data, these morphological results indicate that RNA production in the vegetative nucleus decreases following germination. |
13 | ″ | schema:genre | article |
14 | ″ | schema:isAccessibleForFree | false |
15 | ″ | schema:isPartOf | N301555209b0b4452aeecc8273f7a6281 |
16 | ″ | ″ | Nc84e14fd769b4902a88642ddf8c6413c |
17 | ″ | ″ | sg:journal.1054035 |
18 | ″ | schema:keywords | L. |
19 | ″ | ″ | Nicotiana tabacum L. |
20 | ″ | ″ | RNA production |
21 | ″ | ″ | activation |
22 | ″ | ″ | area |
23 | ″ | ″ | area measurements |
24 | ″ | ″ | biochemical data |
25 | ″ | ″ | changes |
26 | ″ | ″ | complementary biochemical data |
27 | ″ | ″ | conditions |
28 | ″ | ″ | confocal scanning laser microscopy |
29 | ″ | ″ | data |
30 | ″ | ″ | decrease |
31 | ″ | ″ | early process |
32 | ″ | ″ | electron microscopy |
33 | ″ | ″ | freeze-etch electron microscopy |
34 | ″ | ″ | frequency |
35 | ″ | ″ | generative nucleus |
36 | ″ | ″ | germination |
37 | ″ | ″ | grain nuclei |
38 | ″ | ″ | grains |
39 | ″ | ″ | growth |
40 | ″ | ″ | hydrated state |
41 | ″ | ″ | hydration |
42 | ″ | ″ | laser microscopy |
43 | ″ | ″ | measurements |
44 | ″ | ″ | microscopy |
45 | ″ | ″ | morphological changes |
46 | ″ | ″ | morphological results |
47 | ″ | ″ | nuclear pores |
48 | ″ | ″ | nucleus |
49 | ″ | ″ | nucleus decreases |
50 | ″ | ″ | number |
51 | ″ | ″ | pairs |
52 | ″ | ″ | pollen |
53 | ″ | ″ | pollen grains |
54 | ″ | ″ | pollen tube growth |
55 | ″ | ″ | pollen-grain nuclei |
56 | ″ | ″ | pores |
57 | ″ | ″ | process |
58 | ″ | ″ | production |
59 | ″ | ″ | results |
60 | ″ | ″ | same surface area |
61 | ″ | ″ | scanning laser microscopy |
62 | ″ | ″ | side |
63 | ″ | ″ | state |
64 | ″ | ″ | stereoscopic pairs |
65 | ″ | ″ | surface area |
66 | ″ | ″ | surface area measurements |
67 | ″ | ″ | tabacum L. |
68 | ″ | ″ | technique |
69 | ″ | ″ | tobacco pollen |
70 | ″ | ″ | total number |
71 | ″ | ″ | tube growth |
72 | ″ | ″ | use |
73 | ″ | ″ | vegetative nucleus |
74 | ″ | ″ | volume |
75 | ″ | schema:name | Changes in volume, surface area, and frequency of nuclear pores on the vegetative nucleus of tobacco pollen in fresh, hydrated, and activated conditions |
76 | ″ | schema:pagination | 304-309 |
77 | ″ | schema:productId | N3d1b2d1858fc49629f41898e3abe118b |
78 | ″ | ″ | N96658f0aa5a940c69c21cc374aadef5f |
79 | ″ | ″ | Nbb6f2befdc4243749c49c9d406e7bae6 |
80 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1003939541 |
81 | ″ | ″ | https://doi.org/10.1007/bf00195880 |
82 | ″ | schema:sdDatePublished | 2022-08-04T16:51 |
83 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
84 | ″ | schema:sdPublisher | N6bbb1a9571e74c5faaff13de9f49100a |
85 | ″ | schema:url | https://doi.org/10.1007/bf00195880 |
86 | ″ | sgo:license | sg:explorer/license/ |
87 | ″ | sgo:sdDataset | articles |
88 | ″ | rdf:type | schema:ScholarlyArticle |
89 | N173c68ccbeb44bb8840fa6e813782997 | rdf:first | sg:person.01203605146.73 |
90 | ″ | rdf:rest | Nae84cf8568714221b5c62461e571f73b |
91 | N301555209b0b4452aeecc8273f7a6281 | schema:volumeNumber | 181 |
92 | ″ | rdf:type | schema:PublicationVolume |
93 | N3d1b2d1858fc49629f41898e3abe118b | schema:name | pubmed_id |
94 | ″ | schema:value | 24196806 |
95 | ″ | rdf:type | schema:PropertyValue |
96 | N6bbb1a9571e74c5faaff13de9f49100a | schema:name | Springer Nature - SN SciGraph project |
97 | ″ | rdf:type | schema:Organization |
98 | N90d053fdb03b4c05929241b24a584c2d | rdf:first | sg:person.01143621702.15 |
99 | ″ | rdf:rest | N173c68ccbeb44bb8840fa6e813782997 |
100 | N96658f0aa5a940c69c21cc374aadef5f | schema:name | doi |
101 | ″ | schema:value | 10.1007/bf00195880 |
102 | ″ | rdf:type | schema:PropertyValue |
103 | Na011e9ae0e3d41d7ad73a3d174197663 | rdf:first | sg:person.01102353240.55 |
104 | ″ | rdf:rest | N90d053fdb03b4c05929241b24a584c2d |
105 | Nae84cf8568714221b5c62461e571f73b | rdf:first | sg:person.01135772237.24 |
106 | ″ | rdf:rest | rdf:nil |
107 | Nbb6f2befdc4243749c49c9d406e7bae6 | schema:name | dimensions_id |
108 | ″ | schema:value | pub.1003939541 |
109 | ″ | rdf:type | schema:PropertyValue |
110 | Nc84e14fd769b4902a88642ddf8c6413c | schema:issueNumber | 3 |
111 | ″ | rdf:type | schema:PublicationIssue |
112 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
113 | ″ | schema:name | Biological Sciences |
114 | ″ | rdf:type | schema:DefinedTerm |
115 | anzsrc-for:0607 | schema:inDefinedTermSet | anzsrc-for: |
116 | ″ | schema:name | Plant Biology |
117 | ″ | rdf:type | schema:DefinedTerm |
118 | anzsrc-for:07 | schema:inDefinedTermSet | anzsrc-for: |
119 | ″ | schema:name | Agricultural and Veterinary Sciences |
120 | ″ | rdf:type | schema:DefinedTerm |
121 | anzsrc-for:0703 | schema:inDefinedTermSet | anzsrc-for: |
122 | ″ | schema:name | Crop and Pasture Production |
123 | ″ | rdf:type | schema:DefinedTerm |
124 | sg:journal.1054035 | schema:issn | 0032-0935 |
125 | ″ | ″ | 1432-2048 |
126 | ″ | schema:name | Planta |
127 | ″ | schema:publisher | Springer Nature |
128 | ″ | rdf:type | schema:Periodical |
129 | sg:person.01102353240.55 | schema:affiliation | grid-institutes:grid.9024.f |
130 | ″ | schema:familyName | Wagner |
131 | ″ | schema:givenName | Vincent T. |
132 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102353240.55 |
133 | ″ | rdf:type | schema:Person |
134 | sg:person.01135772237.24 | schema:affiliation | grid-institutes:grid.9024.f |
135 | ″ | schema:familyName | Salvatici |
136 | ″ | schema:givenName | Paolo |
137 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135772237.24 |
138 | ″ | rdf:type | schema:Person |
139 | sg:person.01143621702.15 | schema:affiliation | grid-institutes:grid.9024.f |
140 | ″ | schema:familyName | Cresti |
141 | ″ | schema:givenName | Mauro |
142 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143621702.15 |
143 | ″ | rdf:type | schema:Person |
144 | sg:person.01203605146.73 | schema:affiliation | grid-institutes:grid.9024.f |
145 | ″ | schema:familyName | Tiezzi |
146 | ″ | schema:givenName | Antonio |
147 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203605146.73 |
148 | ″ | rdf:type | schema:Person |
149 | sg:pub.10.1007/bf00195587 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1009635437 |
150 | ″ | ″ | https://doi.org/10.1007/bf00195587 |
151 | ″ | rdf:type | schema:CreativeWork |
152 | sg:pub.10.1007/bf01281025 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1001626995 |
153 | ″ | ″ | https://doi.org/10.1007/bf01281025 |
154 | ″ | rdf:type | schema:CreativeWork |
155 | sg:pub.10.1007/bf01291154 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1038945179 |
156 | ″ | ″ | https://doi.org/10.1007/bf01291154 |
157 | ″ | rdf:type | schema:CreativeWork |
158 | sg:pub.10.1007/bf02860839 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1049889395 |
159 | ″ | ″ | https://doi.org/10.1007/bf02860839 |
160 | ″ | rdf:type | schema:CreativeWork |
161 | grid-institutes:grid.9024.f | schema:alternateName | Dipartimento di Biologia Ambientale, Universita di Siena, I-53100, Siena, Italy |
162 | ″ | ″ | Dipartimento di Biologia Evolutiva, Universita di Siena, I-53100, Siena, Italy |
163 | ″ | schema:name | Dipartimento di Biologia Ambientale, Universita di Siena, I-53100, Siena, Italy |
164 | ″ | ″ | Dipartimento di Biologia Evolutiva, Universita di Siena, I-53100, Siena, Italy |
165 | ″ | rdf:type | schema:Organization |