The nonthermal energy content and gamma ray emission of starburst galaxies and clusters of galaxies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-01

AUTHORS

H. J. Völk, F. A. Aharonian, D. Breitschwerdt

ABSTRACT

The nonthermal particle production in contemporary starburst galaxies and in galaxy clusters is estimated from the Supernova rate, the iron content, and an evaluation of the dynamical processes which characterize these objects. The primary energy derives from SN explosions of massive stars. The nonthermal energy is transformed by various secondary processes, like acceleration of particles by Supernova Remnants as well as diffusion and/or convection in galactic winds. If convection dominates, the energy spectrum of nonthermal particles will remain hard. At greater distances from the galaxy almost the entire enthalpy of thermal gas and Cosmic Rays will be converted into wind kinetic energy, implying a fatal adiabatic energy loss for the nonthermal component. If this wind is strong enough then it will end in a strong termination shock, producing a new generation of nonthermal particles which are subsequently released without significant adiabatic losses into the external medium. In clusters of galaxies this should only be the case for early type galaxies, in agreement with observations. Clusters should also accumulate their nonthermal component over their entire history and energize it by gravitational contraction. The pion decay γ-ray fluxes of nearby contemporary starburst galaxies is quite small. However rich clusters should be extended sources of very high energy γ-rays, detectable by the next generation of systems of air Cherenkov telescopes. Such observations will provide an independent empirical method to investigate these objects and their cosmological history. More... »

PAGES

279-297

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00195040

DOI

http://dx.doi.org/10.1007/bf00195040

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034619329


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.419604.e", 
          "name": [
            "Max-Planck-Institut f\u00fcr Kernphysik, Postfach 103980, D-69029, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "V\u00f6lk", 
        "givenName": "H. J.", 
        "id": "sg:person.016224723375.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016224723375.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.419604.e", 
          "name": [
            "Max-Planck-Institut f\u00fcr Kernphysik, Postfach 103980, D-69029, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aharonian", 
        "givenName": "F. A.", 
        "id": "sg:person.01354457257.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354457257.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.419604.e", 
          "name": [
            "Max-Planck-Institut f\u00fcr Kernphysik, Postfach 103980, D-69029, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Breitschwerdt", 
        "givenName": "D.", 
        "id": "sg:person.015765502631.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015765502631.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/358477a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002652464", 
          "https://doi.org/10.1038/358477a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0927-6505(94)90043-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002981052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0927-6505(94)90043-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002981052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/mnras/218.3.409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007954629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0083-6656(82)90005-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026548670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0083-6656(82)90005-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026548670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/57/4/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031818720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/311517a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040881057", 
          "https://doi.org/10.1038/311517a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/1350-4495(94)90108-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046045430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/1350-4495(94)90108-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046045430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/115758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058454337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/155011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058486301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/159128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058490418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/163108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058494398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/167045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058498335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/168812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058500102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/169030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058500320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/173458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058504748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/184430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058513939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/186369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058515878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/187222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058516731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/187715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058517223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.46.4188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060700742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.46.4188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060700742"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-01", 
    "datePublishedReg": "1996-01-01", 
    "description": "The nonthermal particle production in contemporary starburst galaxies and in galaxy clusters is estimated from the Supernova rate, the iron content, and an evaluation of the dynamical processes which characterize these objects. The primary energy derives from SN explosions of massive stars. The nonthermal energy is transformed by various secondary processes, like acceleration of particles by Supernova Remnants as well as diffusion and/or convection in galactic winds. If convection dominates, the energy spectrum of nonthermal particles will remain hard. At greater distances from the galaxy almost the entire enthalpy of thermal gas and Cosmic Rays will be converted into wind kinetic energy, implying a fatal adiabatic energy loss for the nonthermal component. If this wind is strong enough then it will end in a strong termination shock, producing a new generation of nonthermal particles which are subsequently released without significant adiabatic losses into the external medium. In clusters of galaxies this should only be the case for early type galaxies, in agreement with observations. Clusters should also accumulate their nonthermal component over their entire history and energize it by gravitational contraction. The pion decay \u03b3-ray fluxes of nearby contemporary starburst galaxies is quite small. However rich clusters should be extended sources of very high energy \u03b3-rays, detectable by the next generation of systems of air Cherenkov telescopes. Such observations will provide an independent empirical method to investigate these objects and their cosmological history.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00195040", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026170", 
        "issn": [
          "0038-6308", 
          "1572-9672"
        ], 
        "name": "Space Science Reviews", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "75"
      }
    ], 
    "name": "The nonthermal energy content and gamma ray emission of starburst galaxies and clusters of galaxies", 
    "pagination": "279-297", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00195040"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a4e9e319bb4cffa5e8fc8141edc50293b0f00f40bf90b7f3065be6d6e1491868"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034619329"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00195040", 
      "https://app.dimensions.ai/details/publication/pub.1034619329"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119713_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF00195040"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00195040'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00195040'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00195040'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00195040'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00195040 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 schema:author Na2a32ab948284ef5ad3f33f85df8acdb
4 schema:citation sg:pub.10.1038/311517a0
5 sg:pub.10.1038/358477a0
6 https://doi.org/10.1016/0083-6656(82)90005-8
7 https://doi.org/10.1016/0927-6505(94)90043-4
8 https://doi.org/10.1016/1350-4495(94)90108-2
9 https://doi.org/10.1086/115758
10 https://doi.org/10.1086/155011
11 https://doi.org/10.1086/159128
12 https://doi.org/10.1086/163108
13 https://doi.org/10.1086/167045
14 https://doi.org/10.1086/168812
15 https://doi.org/10.1086/169030
16 https://doi.org/10.1086/173458
17 https://doi.org/10.1086/184430
18 https://doi.org/10.1086/186369
19 https://doi.org/10.1086/187222
20 https://doi.org/10.1086/187715
21 https://doi.org/10.1088/0034-4885/57/4/001
22 https://doi.org/10.1093/mnras/218.3.409
23 https://doi.org/10.1103/physrevd.46.4188
24 schema:datePublished 1996-01
25 schema:datePublishedReg 1996-01-01
26 schema:description The nonthermal particle production in contemporary starburst galaxies and in galaxy clusters is estimated from the Supernova rate, the iron content, and an evaluation of the dynamical processes which characterize these objects. The primary energy derives from SN explosions of massive stars. The nonthermal energy is transformed by various secondary processes, like acceleration of particles by Supernova Remnants as well as diffusion and/or convection in galactic winds. If convection dominates, the energy spectrum of nonthermal particles will remain hard. At greater distances from the galaxy almost the entire enthalpy of thermal gas and Cosmic Rays will be converted into wind kinetic energy, implying a fatal adiabatic energy loss for the nonthermal component. If this wind is strong enough then it will end in a strong termination shock, producing a new generation of nonthermal particles which are subsequently released without significant adiabatic losses into the external medium. In clusters of galaxies this should only be the case for early type galaxies, in agreement with observations. Clusters should also accumulate their nonthermal component over their entire history and energize it by gravitational contraction. The pion decay γ-ray fluxes of nearby contemporary starburst galaxies is quite small. However rich clusters should be extended sources of very high energy γ-rays, detectable by the next generation of systems of air Cherenkov telescopes. Such observations will provide an independent empirical method to investigate these objects and their cosmological history.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N0825a64328d04935991adb35bf41ccb8
31 Ncdc1e055f97441c187ebe8388d0dd92b
32 sg:journal.1026170
33 schema:name The nonthermal energy content and gamma ray emission of starburst galaxies and clusters of galaxies
34 schema:pagination 279-297
35 schema:productId N4cc23dccf6954dfa9362fa176039731c
36 N70338d1fec75455c922964dd7dec5b13
37 Nc23d3cf50c914e0e9ad80eb445f46803
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034619329
39 https://doi.org/10.1007/bf00195040
40 schema:sdDatePublished 2019-04-15T08:47
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Nca70ea5d589844cb83778acd9e3714aa
43 schema:url http://link.springer.com/10.1007%2FBF00195040
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N0825a64328d04935991adb35bf41ccb8 schema:volumeNumber 75
48 rdf:type schema:PublicationVolume
49 N08988a198ce74664968d358f9068599e rdf:first sg:person.015765502631.05
50 rdf:rest rdf:nil
51 N4cc23dccf6954dfa9362fa176039731c schema:name readcube_id
52 schema:value a4e9e319bb4cffa5e8fc8141edc50293b0f00f40bf90b7f3065be6d6e1491868
53 rdf:type schema:PropertyValue
54 N63211a9b419444859fa6973a023f7163 rdf:first sg:person.01354457257.24
55 rdf:rest N08988a198ce74664968d358f9068599e
56 N70338d1fec75455c922964dd7dec5b13 schema:name doi
57 schema:value 10.1007/bf00195040
58 rdf:type schema:PropertyValue
59 Na2a32ab948284ef5ad3f33f85df8acdb rdf:first sg:person.016224723375.15
60 rdf:rest N63211a9b419444859fa6973a023f7163
61 Nc23d3cf50c914e0e9ad80eb445f46803 schema:name dimensions_id
62 schema:value pub.1034619329
63 rdf:type schema:PropertyValue
64 Nca70ea5d589844cb83778acd9e3714aa schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Ncdc1e055f97441c187ebe8388d0dd92b schema:issueNumber 1-2
67 rdf:type schema:PublicationIssue
68 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
69 schema:name Physical Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
72 schema:name Astronomical and Space Sciences
73 rdf:type schema:DefinedTerm
74 sg:journal.1026170 schema:issn 0038-6308
75 1572-9672
76 schema:name Space Science Reviews
77 rdf:type schema:Periodical
78 sg:person.01354457257.24 schema:affiliation https://www.grid.ac/institutes/grid.419604.e
79 schema:familyName Aharonian
80 schema:givenName F. A.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354457257.24
82 rdf:type schema:Person
83 sg:person.015765502631.05 schema:affiliation https://www.grid.ac/institutes/grid.419604.e
84 schema:familyName Breitschwerdt
85 schema:givenName D.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015765502631.05
87 rdf:type schema:Person
88 sg:person.016224723375.15 schema:affiliation https://www.grid.ac/institutes/grid.419604.e
89 schema:familyName Völk
90 schema:givenName H. J.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016224723375.15
92 rdf:type schema:Person
93 sg:pub.10.1038/311517a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040881057
94 https://doi.org/10.1038/311517a0
95 rdf:type schema:CreativeWork
96 sg:pub.10.1038/358477a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002652464
97 https://doi.org/10.1038/358477a0
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/0083-6656(82)90005-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026548670
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0927-6505(94)90043-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002981052
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/1350-4495(94)90108-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046045430
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1086/115758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058454337
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1086/155011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058486301
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1086/159128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058490418
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1086/163108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058494398
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1086/167045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058498335
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1086/168812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058500102
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1086/169030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058500320
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1086/173458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058504748
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1086/184430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058513939
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1086/186369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058515878
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1086/187222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058516731
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1086/187715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058517223
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1088/0034-4885/57/4/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031818720
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1093/mnras/218.3.409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007954629
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevd.46.4188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060700742
134 rdf:type schema:CreativeWork
135 https://www.grid.ac/institutes/grid.419604.e schema:alternateName Max Planck Institute for Nuclear Physics
136 schema:name Max-Planck-Institut für Kernphysik, Postfach 103980, D-69029, Heidelberg, Germany
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...