Exhaust gas purification using biocatalysts (fixed bacteria monocultures) — the influence of biofilm diffusion rate (O2) on the overall reaction ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-05

AUTHORS

K. Kirchner, S. Wagner, H.-J. Rehm

ABSTRACT

This paper presents results of experiments on the influence of O2 and substrate (pollutant) concentration on the overall reaction rate of a trickle-bed reactor used for biological waste gas purification. The biocatalyst was a pollutant-specific bacterial monoculture fixed on porous glass carriers. The conversion of acetone and propionaldehyde, as model pollutants that are easily soluble in water, was measured. Under constant hydrodynamic conditions (gas and liquid flow rates) the inlet pollutant concentration was varied. The O2 partial pressure in the model gas was increased to investigate the influence of O2 supply on pollutant conversion. At higher pollutant concentrations (>117 mg acetone.m-3 gas and > 150 mg propionaldehyde.m-3 gas) higher concentrations of dissolved O2 led to a significant rise in the maximum degradation capacity of the reactor. This maximum reaction rate was independent of the pollutant mass flow. It seems that the diffusion of O2 in the biofilm is rate-determining. The reaction rate at lower inlet concentrations was not affected by the improved O2 supply. Here the external mass transfer through the liquid film limits the reaction rate and the maximum separation efficiency of about 80% at a residence time of 1.2s (space velocity 3000h-1) is achieved. More... »

PAGES

277-279

References to SciGraph publications

  • 1987-09. Exhaust gas purification using immobilised monocultures (biocatalysts) in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 1985-01. Phenol degradation by microorganisms adsorbed on activated carbon in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 1988-09. Estimation of oxygen penetration depth in immobilized cells in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 1989-10. Biological purification of exhaust air using fixed bacterial monocultures in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00178184

    DOI

    http://dx.doi.org/10.1007/bf00178184

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1024959303


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Society for Chemical Engineering and Biotechnology", 
              "id": "https://www.grid.ac/institutes/grid.59914.30", 
              "name": [
                "DECHEMA-Institut, Theodor-Heuss-Allee 25, W-6000, Frankfurt am Main 97, Federal Republic of Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kirchner", 
            "givenName": "K.", 
            "id": "sg:person.014010372231.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014010372231.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Society for Chemical Engineering and Biotechnology", 
              "id": "https://www.grid.ac/institutes/grid.59914.30", 
              "name": [
                "DECHEMA-Institut, Theodor-Heuss-Allee 25, W-6000, Frankfurt am Main 97, Federal Republic of Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wagner", 
            "givenName": "S.", 
            "id": "sg:person.014605752631.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014605752631.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of M\u00fcnster", 
              "id": "https://www.grid.ac/institutes/grid.5949.1", 
              "name": [
                "Institut f\u00fcr Mikrobiologie, Westf\u00e4lische Wilhelms-Universit\u00e4t, Corrensstrasse 3, W-4400, M\u00fcnster, Federal Republic of Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rehm", 
            "givenName": "H.-J.", 
            "id": "sg:person.012374451524.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012374451524.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00253036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015426022", 
              "https://doi.org/10.1007/bf00253036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00253036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015426022", 
              "https://doi.org/10.1007/bf00253036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00253036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015426022", 
              "https://doi.org/10.1007/bf00253036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00939293", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025563241", 
              "https://doi.org/10.1007/bf00939293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.260310608", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046420730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00252358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047224067", 
              "https://doi.org/10.1007/bf00252358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00252358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047224067", 
              "https://doi.org/10.1007/bf00252358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00270808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047698474", 
              "https://doi.org/10.1007/bf00270808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00270808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047698474", 
              "https://doi.org/10.1007/bf00270808"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1992-05", 
        "datePublishedReg": "1992-05-01", 
        "description": "This paper presents results of experiments on the influence of O2 and substrate (pollutant) concentration on the overall reaction rate of a trickle-bed reactor used for biological waste gas purification. The biocatalyst was a pollutant-specific bacterial monoculture fixed on porous glass carriers. The conversion of acetone and propionaldehyde, as model pollutants that are easily soluble in water, was measured. Under constant hydrodynamic conditions (gas and liquid flow rates) the inlet pollutant concentration was varied. The O2 partial pressure in the model gas was increased to investigate the influence of O2 supply on pollutant conversion. At higher pollutant concentrations (>117 mg acetone.m-3 gas and > 150 mg propionaldehyde.m-3 gas) higher concentrations of dissolved O2 led to a significant rise in the maximum degradation capacity of the reactor. This maximum reaction rate was independent of the pollutant mass flow. It seems that the diffusion of O2 in the biofilm is rate-determining. The reaction rate at lower inlet concentrations was not affected by the improved O2 supply. Here the external mass transfer through the liquid film limits the reaction rate and the maximum separation efficiency of about 80% at a residence time of 1.2s (space velocity 3000h-1) is achieved.", 
        "genre": "non_research_article", 
        "id": "sg:pub.10.1007/bf00178184", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1083533", 
            "issn": [
              "0175-7598", 
              "1432-0614"
            ], 
            "name": "Applied Microbiology and Biotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "37"
          }
        ], 
        "name": "Exhaust gas purification using biocatalysts (fixed bacteria monocultures) \u2014 the influence of biofilm diffusion rate (O2) on the overall reaction rate", 
        "pagination": "277-279", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00178184"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "76e796a13f255454921ae3e73c9cad487944b843581424f2606ad13f80def3ea"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1024959303"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00178184", 
          "https://app.dimensions.ai/details/publication/pub.1024959303"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T08:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119752_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF00178184"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00178184'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00178184'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00178184'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00178184'


     

    This table displays all metadata directly associated to this object as RDF triples.

    97 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00178184 schema:about anzsrc-for:09
    2 anzsrc-for:0907
    3 schema:author Ncd5568692a064b51936a738d15bd59db
    4 schema:citation sg:pub.10.1007/bf00252358
    5 sg:pub.10.1007/bf00253036
    6 sg:pub.10.1007/bf00270808
    7 sg:pub.10.1007/bf00939293
    8 https://doi.org/10.1002/bit.260310608
    9 schema:datePublished 1992-05
    10 schema:datePublishedReg 1992-05-01
    11 schema:description This paper presents results of experiments on the influence of O2 and substrate (pollutant) concentration on the overall reaction rate of a trickle-bed reactor used for biological waste gas purification. The biocatalyst was a pollutant-specific bacterial monoculture fixed on porous glass carriers. The conversion of acetone and propionaldehyde, as model pollutants that are easily soluble in water, was measured. Under constant hydrodynamic conditions (gas and liquid flow rates) the inlet pollutant concentration was varied. The O2 partial pressure in the model gas was increased to investigate the influence of O2 supply on pollutant conversion. At higher pollutant concentrations (>117 mg acetone.m-3 gas and > 150 mg propionaldehyde.m-3 gas) higher concentrations of dissolved O2 led to a significant rise in the maximum degradation capacity of the reactor. This maximum reaction rate was independent of the pollutant mass flow. It seems that the diffusion of O2 in the biofilm is rate-determining. The reaction rate at lower inlet concentrations was not affected by the improved O2 supply. Here the external mass transfer through the liquid film limits the reaction rate and the maximum separation efficiency of about 80% at a residence time of 1.2s (space velocity 3000h-1) is achieved.
    12 schema:genre non_research_article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N1492df6312904d9ab62ce5fbec49db27
    16 N8a9261c146df4bb6a5c6f2cdee5157f7
    17 sg:journal.1083533
    18 schema:name Exhaust gas purification using biocatalysts (fixed bacteria monocultures) — the influence of biofilm diffusion rate (O2) on the overall reaction rate
    19 schema:pagination 277-279
    20 schema:productId N125feacb4b9e4293b62f21149b3f8b0b
    21 Ne79e7975705a4ec3936bac230cd572b1
    22 Nfab1647b72bc4e27a2fb0927056cf13f
    23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024959303
    24 https://doi.org/10.1007/bf00178184
    25 schema:sdDatePublished 2019-04-15T08:54
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher N98d794aabd47448caeec78408c09fe08
    28 schema:url http://link.springer.com/10.1007/BF00178184
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset articles
    31 rdf:type schema:ScholarlyArticle
    32 N125feacb4b9e4293b62f21149b3f8b0b schema:name doi
    33 schema:value 10.1007/bf00178184
    34 rdf:type schema:PropertyValue
    35 N1492df6312904d9ab62ce5fbec49db27 schema:volumeNumber 37
    36 rdf:type schema:PublicationVolume
    37 N3fd21611976a4df1b38a04edae70197d rdf:first sg:person.012374451524.47
    38 rdf:rest rdf:nil
    39 N8a9261c146df4bb6a5c6f2cdee5157f7 schema:issueNumber 2
    40 rdf:type schema:PublicationIssue
    41 N98d794aabd47448caeec78408c09fe08 schema:name Springer Nature - SN SciGraph project
    42 rdf:type schema:Organization
    43 Ncd5568692a064b51936a738d15bd59db rdf:first sg:person.014010372231.22
    44 rdf:rest Ne748d2545bc941cfaa67d4df9e2d05cd
    45 Ne748d2545bc941cfaa67d4df9e2d05cd rdf:first sg:person.014605752631.17
    46 rdf:rest N3fd21611976a4df1b38a04edae70197d
    47 Ne79e7975705a4ec3936bac230cd572b1 schema:name readcube_id
    48 schema:value 76e796a13f255454921ae3e73c9cad487944b843581424f2606ad13f80def3ea
    49 rdf:type schema:PropertyValue
    50 Nfab1647b72bc4e27a2fb0927056cf13f schema:name dimensions_id
    51 schema:value pub.1024959303
    52 rdf:type schema:PropertyValue
    53 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    54 schema:name Engineering
    55 rdf:type schema:DefinedTerm
    56 anzsrc-for:0907 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Environmental Engineering
    58 rdf:type schema:DefinedTerm
    59 sg:journal.1083533 schema:issn 0175-7598
    60 1432-0614
    61 schema:name Applied Microbiology and Biotechnology
    62 rdf:type schema:Periodical
    63 sg:person.012374451524.47 schema:affiliation https://www.grid.ac/institutes/grid.5949.1
    64 schema:familyName Rehm
    65 schema:givenName H.-J.
    66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012374451524.47
    67 rdf:type schema:Person
    68 sg:person.014010372231.22 schema:affiliation https://www.grid.ac/institutes/grid.59914.30
    69 schema:familyName Kirchner
    70 schema:givenName K.
    71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014010372231.22
    72 rdf:type schema:Person
    73 sg:person.014605752631.17 schema:affiliation https://www.grid.ac/institutes/grid.59914.30
    74 schema:familyName Wagner
    75 schema:givenName S.
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014605752631.17
    77 rdf:type schema:Person
    78 sg:pub.10.1007/bf00252358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047224067
    79 https://doi.org/10.1007/bf00252358
    80 rdf:type schema:CreativeWork
    81 sg:pub.10.1007/bf00253036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015426022
    82 https://doi.org/10.1007/bf00253036
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1007/bf00270808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047698474
    85 https://doi.org/10.1007/bf00270808
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1007/bf00939293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025563241
    88 https://doi.org/10.1007/bf00939293
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1002/bit.260310608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046420730
    91 rdf:type schema:CreativeWork
    92 https://www.grid.ac/institutes/grid.5949.1 schema:alternateName University of Münster
    93 schema:name Institut für Mikrobiologie, Westfälische Wilhelms-Universität, Corrensstrasse 3, W-4400, Münster, Federal Republic of Germany
    94 rdf:type schema:Organization
    95 https://www.grid.ac/institutes/grid.59914.30 schema:alternateName Society for Chemical Engineering and Biotechnology
    96 schema:name DECHEMA-Institut, Theodor-Heuss-Allee 25, W-6000, Frankfurt am Main 97, Federal Republic of Germany
    97 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...