Choice in Varroa jacobsoni Oud. between honey bee drone or workerbrood cells for reproduction View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-12

AUTHORS

S. Fuchs

ABSTRACT

The parasitic mite Varroa jacobsoni Oud. reproduces in brood cells of Apis mellifera. Reproductive success (RS) is higher in drone cells than in worker cells. Although the mites are capable of discriminating between the cell types, the less favorable worker cells are also parasitized. A model is proposed that explains the acceptance of worker cells by density-dependent reduction of RS if more than one Varroa enters a brood cell. Calculations were based on simulated distributions of Varroa on brood combs. Assuming that mites infesting brood cells would always accept drone cells, but would only sometimes accept worker cells, the optimal rate of worker cell acceptance was determined. While at low infestation levels and high fractions of drone cells selection would favor the parasitization of drone brood cells only, mixed strategies would result if infestation is high and/or drone cells are scarce. The model calculations were applied to data on brood cell availability in European colonies during one annual season, including seasonal shifts of selection intensity and direction. On average, accepting worker cells would be advantageous when there are approximately 300 or more mites within a colony, which would be within the natural range of worker cell acceptance at densities of approximately 1000 Varroa mites per colony. More... »

PAGES

429-435

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00170610

DOI

http://dx.doi.org/10.1007/bf00170610

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024959345


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Immunology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Goethe University Frankfurt", 
          "id": "https://www.grid.ac/institutes/grid.7839.5", 
          "name": [
            "Institut f\u00fcr Bienenkunde (Polytechnische Gesellschaft), J.W. Goethe-Universit\u00e4t Frankfurt/Main, Karl-von-Frisch-Weg 2, W-6370, Oberursel, Federal Republic of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fuchs", 
        "givenName": "S.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1051/apido:19900406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001259386", 
          "https://doi.org/10.1051/apido:19900406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1051/apido:19830305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001650903", 
          "https://doi.org/10.1051/apido:19830305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-68635-1_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001844353", 
          "https://doi.org/10.1007/978-3-642-68635-1_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1910(86)90082-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003398244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1910(86)90082-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003398244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1051/apido:19880303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014939393", 
          "https://doi.org/10.1051/apido:19880303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1051/apido:19840404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015729607", 
          "https://doi.org/10.1051/apido:19840404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00218839.1965.11100114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019573853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1051/apido:19880207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025932806", 
          "https://doi.org/10.1051/apido:19880207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00218839.1983.11100588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028380603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1051/apido:19850401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034592726", 
          "https://doi.org/10.1051/apido:19850401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1051/apido:19890308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038748185", 
          "https://doi.org/10.1051/apido:19890308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1051/apido:19810103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044315237", 
          "https://doi.org/10.1051/apido:19810103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1051/apido:19880208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047241962", 
          "https://doi.org/10.1051/apido:19880208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1051/apido:19890406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047769687", 
          "https://doi.org/10.1051/apido:19890406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1051/apido:19920210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053289749", 
          "https://doi.org/10.1051/apido:19920210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.245.4918.638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062538166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1127/entom.gen/14/1988/103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062704380"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1992-12", 
    "datePublishedReg": "1992-12-01", 
    "description": "The parasitic mite Varroa jacobsoni Oud. reproduces in brood cells of Apis mellifera. Reproductive success (RS) is higher in drone cells than in worker cells. Although the mites are capable of discriminating between the cell types, the less favorable worker cells are also parasitized. A model is proposed that explains the acceptance of worker cells by density-dependent reduction of RS if more than one Varroa enters a brood cell. Calculations were based on simulated distributions of Varroa on brood combs. Assuming that mites infesting brood cells would always accept drone cells, but would only sometimes accept worker cells, the optimal rate of worker cell acceptance was determined. While at low infestation levels and high fractions of drone cells selection would favor the parasitization of drone brood cells only, mixed strategies would result if infestation is high and/or drone cells are scarce. The model calculations were applied to data on brood cell availability in European colonies during one annual season, including seasonal shifts of selection intensity and direction. On average, accepting worker cells would be advantageous when there are approximately 300 or more mites within a colony, which would be within the natural range of worker cell acceptance at densities of approximately 1000 Varroa mites per colony.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00170610", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1085476", 
        "issn": [
          "0340-5443", 
          "1432-0762"
        ], 
        "name": "Behavioral Ecology and Sociobiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "name": "Choice in Varroa jacobsoni Oud. between honey bee drone or workerbrood cells for reproduction", 
    "pagination": "429-435", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "76e7a18ef0d0a0aa59b4e7b0cb4df9465a65808d96a4ce15f93c1f311c65d40a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00170610"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024959345"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00170610", 
      "https://app.dimensions.ai/details/publication/pub.1024959345"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130823_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00170610"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00170610'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00170610'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00170610'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00170610'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00170610 schema:about anzsrc-for:11
2 anzsrc-for:1107
3 schema:author N46dd17f138b74cd1ad67cf715d11115f
4 schema:citation sg:pub.10.1007/978-3-642-68635-1_3
5 sg:pub.10.1051/apido:19810103
6 sg:pub.10.1051/apido:19830305
7 sg:pub.10.1051/apido:19840404
8 sg:pub.10.1051/apido:19850401
9 sg:pub.10.1051/apido:19880207
10 sg:pub.10.1051/apido:19880208
11 sg:pub.10.1051/apido:19880303
12 sg:pub.10.1051/apido:19890308
13 sg:pub.10.1051/apido:19890406
14 sg:pub.10.1051/apido:19900406
15 sg:pub.10.1051/apido:19920210
16 https://doi.org/10.1016/0022-1910(86)90082-x
17 https://doi.org/10.1080/00218839.1965.11100114
18 https://doi.org/10.1080/00218839.1983.11100588
19 https://doi.org/10.1126/science.245.4918.638
20 https://doi.org/10.1127/entom.gen/14/1988/103
21 schema:datePublished 1992-12
22 schema:datePublishedReg 1992-12-01
23 schema:description The parasitic mite Varroa jacobsoni Oud. reproduces in brood cells of Apis mellifera. Reproductive success (RS) is higher in drone cells than in worker cells. Although the mites are capable of discriminating between the cell types, the less favorable worker cells are also parasitized. A model is proposed that explains the acceptance of worker cells by density-dependent reduction of RS if more than one Varroa enters a brood cell. Calculations were based on simulated distributions of Varroa on brood combs. Assuming that mites infesting brood cells would always accept drone cells, but would only sometimes accept worker cells, the optimal rate of worker cell acceptance was determined. While at low infestation levels and high fractions of drone cells selection would favor the parasitization of drone brood cells only, mixed strategies would result if infestation is high and/or drone cells are scarce. The model calculations were applied to data on brood cell availability in European colonies during one annual season, including seasonal shifts of selection intensity and direction. On average, accepting worker cells would be advantageous when there are approximately 300 or more mites within a colony, which would be within the natural range of worker cell acceptance at densities of approximately 1000 Varroa mites per colony.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N7f6c61c9e0094d9da1beaa2db37be51c
28 N83b15a114b6c411cbc832f7081ed81d8
29 sg:journal.1085476
30 schema:name Choice in Varroa jacobsoni Oud. between honey bee drone or workerbrood cells for reproduction
31 schema:pagination 429-435
32 schema:productId N3b1d6d5c6e39484dbb8dc55d6bd706e9
33 N7f000d7fd0064a55a6e4466f7eaa34ed
34 Nd604636306fe45b082020de1085beacc
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024959345
36 https://doi.org/10.1007/bf00170610
37 schema:sdDatePublished 2019-04-11T13:58
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N61cccb2f0a314491859514a5ea59d3fc
40 schema:url http://link.springer.com/10.1007/BF00170610
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N2a35126b62f04e7cb1481eb7749fc274 schema:affiliation https://www.grid.ac/institutes/grid.7839.5
45 schema:familyName Fuchs
46 schema:givenName S.
47 rdf:type schema:Person
48 N3b1d6d5c6e39484dbb8dc55d6bd706e9 schema:name doi
49 schema:value 10.1007/bf00170610
50 rdf:type schema:PropertyValue
51 N46dd17f138b74cd1ad67cf715d11115f rdf:first N2a35126b62f04e7cb1481eb7749fc274
52 rdf:rest rdf:nil
53 N61cccb2f0a314491859514a5ea59d3fc schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N7f000d7fd0064a55a6e4466f7eaa34ed schema:name readcube_id
56 schema:value 76e7a18ef0d0a0aa59b4e7b0cb4df9465a65808d96a4ce15f93c1f311c65d40a
57 rdf:type schema:PropertyValue
58 N7f6c61c9e0094d9da1beaa2db37be51c schema:issueNumber 6
59 rdf:type schema:PublicationIssue
60 N83b15a114b6c411cbc832f7081ed81d8 schema:volumeNumber 31
61 rdf:type schema:PublicationVolume
62 Nd604636306fe45b082020de1085beacc schema:name dimensions_id
63 schema:value pub.1024959345
64 rdf:type schema:PropertyValue
65 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
66 schema:name Medical and Health Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
69 schema:name Immunology
70 rdf:type schema:DefinedTerm
71 sg:journal.1085476 schema:issn 0340-5443
72 1432-0762
73 schema:name Behavioral Ecology and Sociobiology
74 rdf:type schema:Periodical
75 sg:pub.10.1007/978-3-642-68635-1_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001844353
76 https://doi.org/10.1007/978-3-642-68635-1_3
77 rdf:type schema:CreativeWork
78 sg:pub.10.1051/apido:19810103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044315237
79 https://doi.org/10.1051/apido:19810103
80 rdf:type schema:CreativeWork
81 sg:pub.10.1051/apido:19830305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001650903
82 https://doi.org/10.1051/apido:19830305
83 rdf:type schema:CreativeWork
84 sg:pub.10.1051/apido:19840404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015729607
85 https://doi.org/10.1051/apido:19840404
86 rdf:type schema:CreativeWork
87 sg:pub.10.1051/apido:19850401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034592726
88 https://doi.org/10.1051/apido:19850401
89 rdf:type schema:CreativeWork
90 sg:pub.10.1051/apido:19880207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025932806
91 https://doi.org/10.1051/apido:19880207
92 rdf:type schema:CreativeWork
93 sg:pub.10.1051/apido:19880208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047241962
94 https://doi.org/10.1051/apido:19880208
95 rdf:type schema:CreativeWork
96 sg:pub.10.1051/apido:19880303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014939393
97 https://doi.org/10.1051/apido:19880303
98 rdf:type schema:CreativeWork
99 sg:pub.10.1051/apido:19890308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038748185
100 https://doi.org/10.1051/apido:19890308
101 rdf:type schema:CreativeWork
102 sg:pub.10.1051/apido:19890406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047769687
103 https://doi.org/10.1051/apido:19890406
104 rdf:type schema:CreativeWork
105 sg:pub.10.1051/apido:19900406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001259386
106 https://doi.org/10.1051/apido:19900406
107 rdf:type schema:CreativeWork
108 sg:pub.10.1051/apido:19920210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053289749
109 https://doi.org/10.1051/apido:19920210
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0022-1910(86)90082-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003398244
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1080/00218839.1965.11100114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019573853
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1080/00218839.1983.11100588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028380603
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1126/science.245.4918.638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062538166
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1127/entom.gen/14/1988/103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062704380
120 rdf:type schema:CreativeWork
121 https://www.grid.ac/institutes/grid.7839.5 schema:alternateName Goethe University Frankfurt
122 schema:name Institut für Bienenkunde (Polytechnische Gesellschaft), J.W. Goethe-Universität Frankfurt/Main, Karl-von-Frisch-Weg 2, W-6370, Oberursel, Federal Republic of Germany
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...