Anti-phase solutions in relaxation oscillators coupled through excitatory interactions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-12

AUTHORS

Nancy Kopell, David Somers

ABSTRACT

Relaxation oscillators interacting via models of excitatory chemical synapses with sharp thresholds can have stable anti-phase as well as in-phase solutions. The mechanism for anti-phase demonstrated in this paper relies on the fact that, in a large class of neural models, excitatory input slows down the receiving oscillator over a portion of its trajectory. We analyze the effect of this "virtual delay" in an abstract model, and then show that the hypotheses of that model hold for widely used descriptions of bursting neurons. More... »

PAGES

261-280

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00169564

DOI

http://dx.doi.org/10.1007/bf00169564

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019702404

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/7897329


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Neurological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oscillometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Synapses", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Department of Mathematics, Boston University, 111 Cummington Street, 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kopell", 
        "givenName": "Nancy", 
        "id": "sg:person.01244301604.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244301604.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Cognitive and Neural Systems, Boston University, 111 Cummington Street, 02215, Boston, MA, USA", 
            "Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 45 Carleton Street, E25-61802139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Somers", 
        "givenName": "David", 
        "id": "sg:person.01146070413.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146070413.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00198772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007511494", 
          "https://doi.org/10.1007/bf00198772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00198772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007511494", 
          "https://doi.org/10.1007/bf00198772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1992.4.1.84", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007643028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7462(80)90024-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008259520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7462(80)90024-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008259520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(72)86068-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008475623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00364162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023949379", 
          "https://doi.org/10.1007/bf00364162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00275692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024206714", 
          "https://doi.org/10.1007/bf00275692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00275692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024206714", 
          "https://doi.org/10.1007/bf00275692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0396(87)90024-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026276053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00327046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028503470", 
          "https://doi.org/10.1007/bf00327046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00276920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028702639", 
          "https://doi.org/10.1007/bf00276920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00276920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028702639", 
          "https://doi.org/10.1007/bf00276920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.60.3.758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034806229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(81)84782-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035440610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1952.sp004764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038260469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.89.6.2471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044751121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00364154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052700723", 
          "https://doi.org/10.1007/bf00364154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/qam/745099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059349176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0137022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062839858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0146006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062840416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0150009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062840785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0150098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062840874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/23/5/011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064229617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josa.58.001133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065150923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080752573", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082214472", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995-12", 
    "datePublishedReg": "1995-12-01", 
    "description": "Relaxation oscillators interacting via models of excitatory chemical synapses with sharp thresholds can have stable anti-phase as well as in-phase solutions. The mechanism for anti-phase demonstrated in this paper relies on the fact that, in a large class of neural models, excitatory input slows down the receiving oscillator over a portion of its trajectory. We analyze the effect of this \"virtual delay\" in an abstract model, and then show that the hypotheses of that model hold for widely used descriptions of bursting neurons.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00169564", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2547588", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1081642", 
        "issn": [
          "0303-6812", 
          "1432-1416"
        ], 
        "name": "Journal of Mathematical Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "name": "Anti-phase solutions in relaxation oscillators coupled through excitatory interactions", 
    "pagination": "261-280", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5ddfbe6c0d2a6ee70fdb67ebe94fbafae919d45f1b99c1219f6115fdb942dedd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "7897329"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7502105"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00169564"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019702404"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00169564", 
      "https://app.dimensions.ai/details/publication/pub.1019702404"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130808_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00169564"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00169564'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00169564'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00169564'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00169564'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      58 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00169564 schema:about N585bf7dbad594a958af05bba600665f0
2 N6a0452f0c072414dab892eaff5e9f515
3 N8445ffc11fba486e8e088b6fe3c29548
4 N8aff691127194eb68d87bc807391824c
5 Nc9f9fb976e2a4979bf81e04c2e45de56
6 Ndaffaa7bdd8c4f9099146b72e2d3df52
7 anzsrc-for:11
8 anzsrc-for:1109
9 schema:author Nb673924e34a74c2184d22897c297ac4c
10 schema:citation sg:pub.10.1007/bf00198772
11 sg:pub.10.1007/bf00275692
12 sg:pub.10.1007/bf00276920
13 sg:pub.10.1007/bf00327046
14 sg:pub.10.1007/bf00364154
15 sg:pub.10.1007/bf00364162
16 https://app.dimensions.ai/details/publication/pub.1080752573
17 https://app.dimensions.ai/details/publication/pub.1082214472
18 https://doi.org/10.1016/0020-7462(80)90024-4
19 https://doi.org/10.1016/0022-0396(87)90024-6
20 https://doi.org/10.1016/s0006-3495(72)86068-5
21 https://doi.org/10.1016/s0006-3495(81)84782-0
22 https://doi.org/10.1073/pnas.60.3.758
23 https://doi.org/10.1073/pnas.89.6.2471
24 https://doi.org/10.1090/qam/745099
25 https://doi.org/10.1113/jphysiol.1952.sp004764
26 https://doi.org/10.1137/0137022
27 https://doi.org/10.1137/0146006
28 https://doi.org/10.1137/0150009
29 https://doi.org/10.1137/0150098
30 https://doi.org/10.1162/neco.1992.4.1.84
31 https://doi.org/10.1209/0295-5075/23/5/011
32 https://doi.org/10.1364/josa.58.001133
33 schema:datePublished 1995-12
34 schema:datePublishedReg 1995-12-01
35 schema:description Relaxation oscillators interacting via models of excitatory chemical synapses with sharp thresholds can have stable anti-phase as well as in-phase solutions. The mechanism for anti-phase demonstrated in this paper relies on the fact that, in a large class of neural models, excitatory input slows down the receiving oscillator over a portion of its trajectory. We analyze the effect of this "virtual delay" in an abstract model, and then show that the hypotheses of that model hold for widely used descriptions of bursting neurons.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N2b0508c66f684e71bc41e286999ef2d3
40 Ndae3d0aac7654095b05e085faf15bc9e
41 sg:journal.1081642
42 schema:name Anti-phase solutions in relaxation oscillators coupled through excitatory interactions
43 schema:pagination 261-280
44 schema:productId N1d4891ef65e04d04be1f2b58337cff04
45 N46c5f4fecc3f43acaee2ff933bfea81e
46 N4c4f539b802f4bb9bb927d4ce160c7a9
47 Nb7bc689972bf4efc992482a86acc31cc
48 Ne9797d3fa0d244218e0b0629a6d61492
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019702404
50 https://doi.org/10.1007/bf00169564
51 schema:sdDatePublished 2019-04-11T13:53
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N831e56f1fd124137b1461bed546ad02e
54 schema:url http://link.springer.com/10.1007/BF00169564
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N1d4891ef65e04d04be1f2b58337cff04 schema:name nlm_unique_id
59 schema:value 7502105
60 rdf:type schema:PropertyValue
61 N2b0508c66f684e71bc41e286999ef2d3 schema:volumeNumber 33
62 rdf:type schema:PublicationVolume
63 N46c5f4fecc3f43acaee2ff933bfea81e schema:name dimensions_id
64 schema:value pub.1019702404
65 rdf:type schema:PropertyValue
66 N4c4f539b802f4bb9bb927d4ce160c7a9 schema:name readcube_id
67 schema:value 5ddfbe6c0d2a6ee70fdb67ebe94fbafae919d45f1b99c1219f6115fdb942dedd
68 rdf:type schema:PropertyValue
69 N585bf7dbad594a958af05bba600665f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Synapses
71 rdf:type schema:DefinedTerm
72 N5e652d96d5e444bbb2db8b787c9f51f7 rdf:first sg:person.01146070413.11
73 rdf:rest rdf:nil
74 N6a0452f0c072414dab892eaff5e9f515 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Animals
76 rdf:type schema:DefinedTerm
77 N831e56f1fd124137b1461bed546ad02e schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N8445ffc11fba486e8e088b6fe3c29548 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Oscillometry
81 rdf:type schema:DefinedTerm
82 N8aff691127194eb68d87bc807391824c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Models, Theoretical
84 rdf:type schema:DefinedTerm
85 Nb673924e34a74c2184d22897c297ac4c rdf:first sg:person.01244301604.43
86 rdf:rest N5e652d96d5e444bbb2db8b787c9f51f7
87 Nb7bc689972bf4efc992482a86acc31cc schema:name pubmed_id
88 schema:value 7897329
89 rdf:type schema:PropertyValue
90 Nc9f9fb976e2a4979bf81e04c2e45de56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Models, Neurological
92 rdf:type schema:DefinedTerm
93 Ndae3d0aac7654095b05e085faf15bc9e schema:issueNumber 3
94 rdf:type schema:PublicationIssue
95 Ndaffaa7bdd8c4f9099146b72e2d3df52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Neurons
97 rdf:type schema:DefinedTerm
98 Ne9797d3fa0d244218e0b0629a6d61492 schema:name doi
99 schema:value 10.1007/bf00169564
100 rdf:type schema:PropertyValue
101 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
102 schema:name Medical and Health Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
105 schema:name Neurosciences
106 rdf:type schema:DefinedTerm
107 sg:grant.2547588 http://pending.schema.org/fundedItem sg:pub.10.1007/bf00169564
108 rdf:type schema:MonetaryGrant
109 sg:journal.1081642 schema:issn 0303-6812
110 1432-1416
111 schema:name Journal of Mathematical Biology
112 rdf:type schema:Periodical
113 sg:person.01146070413.11 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
114 schema:familyName Somers
115 schema:givenName David
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146070413.11
117 rdf:type schema:Person
118 sg:person.01244301604.43 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
119 schema:familyName Kopell
120 schema:givenName Nancy
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244301604.43
122 rdf:type schema:Person
123 sg:pub.10.1007/bf00198772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007511494
124 https://doi.org/10.1007/bf00198772
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf00275692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024206714
127 https://doi.org/10.1007/bf00275692
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/bf00276920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028702639
130 https://doi.org/10.1007/bf00276920
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/bf00327046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028503470
133 https://doi.org/10.1007/bf00327046
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/bf00364154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052700723
136 https://doi.org/10.1007/bf00364154
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/bf00364162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023949379
139 https://doi.org/10.1007/bf00364162
140 rdf:type schema:CreativeWork
141 https://app.dimensions.ai/details/publication/pub.1080752573 schema:CreativeWork
142 https://app.dimensions.ai/details/publication/pub.1082214472 schema:CreativeWork
143 https://doi.org/10.1016/0020-7462(80)90024-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008259520
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/0022-0396(87)90024-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026276053
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/s0006-3495(72)86068-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008475623
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/s0006-3495(81)84782-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035440610
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1073/pnas.60.3.758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034806229
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1073/pnas.89.6.2471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044751121
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1090/qam/745099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059349176
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1113/jphysiol.1952.sp004764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038260469
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1137/0137022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062839858
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1137/0146006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062840416
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1137/0150009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062840785
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1137/0150098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062840874
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1162/neco.1992.4.1.84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007643028
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1209/0295-5075/23/5/011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064229617
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1364/josa.58.001133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065150923
172 rdf:type schema:CreativeWork
173 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
174 schema:name Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 45 Carleton Street, E25-61802139, Cambridge, MA, USA
175 Department of Cognitive and Neural Systems, Boston University, 111 Cummington Street, 02215, Boston, MA, USA
176 rdf:type schema:Organization
177 https://www.grid.ac/institutes/grid.189504.1 schema:alternateName Boston University
178 schema:name Department of Mathematics, Boston University, 111 Cummington Street, 02215, Boston, MA, USA
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...