Anti-phase solutions in relaxation oscillators coupled through excitatory interactions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-12

AUTHORS

Nancy Kopell, David Somers

ABSTRACT

Relaxation oscillators interacting via models of excitatory chemical synapses with sharp thresholds can have stable anti-phase as well as in-phase solutions. The mechanism for anti-phase demonstrated in this paper relies on the fact that, in a large class of neural models, excitatory input slows down the receiving oscillator over a portion of its trajectory. We analyze the effect of this "virtual delay" in an abstract model, and then show that the hypotheses of that model hold for widely used descriptions of bursting neurons. More... »

PAGES

261-280

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00169564

DOI

http://dx.doi.org/10.1007/bf00169564

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019702404

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/7897329


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Neurological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oscillometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Synapses", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Department of Mathematics, Boston University, 111 Cummington Street, 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kopell", 
        "givenName": "Nancy", 
        "id": "sg:person.01244301604.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244301604.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Cognitive and Neural Systems, Boston University, 111 Cummington Street, 02215, Boston, MA, USA", 
            "Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 45 Carleton Street, E25-61802139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Somers", 
        "givenName": "David", 
        "id": "sg:person.01146070413.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146070413.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00198772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007511494", 
          "https://doi.org/10.1007/bf00198772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00198772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007511494", 
          "https://doi.org/10.1007/bf00198772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1992.4.1.84", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007643028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7462(80)90024-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008259520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7462(80)90024-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008259520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(72)86068-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008475623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00364162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023949379", 
          "https://doi.org/10.1007/bf00364162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00275692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024206714", 
          "https://doi.org/10.1007/bf00275692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00275692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024206714", 
          "https://doi.org/10.1007/bf00275692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0396(87)90024-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026276053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00327046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028503470", 
          "https://doi.org/10.1007/bf00327046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00276920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028702639", 
          "https://doi.org/10.1007/bf00276920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00276920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028702639", 
          "https://doi.org/10.1007/bf00276920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.60.3.758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034806229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(81)84782-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035440610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1952.sp004764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038260469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.89.6.2471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044751121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00364154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052700723", 
          "https://doi.org/10.1007/bf00364154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/qam/745099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059349176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0137022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062839858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0146006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062840416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0150009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062840785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0150098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062840874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/23/5/011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064229617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josa.58.001133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065150923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080752573", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082214472", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995-12", 
    "datePublishedReg": "1995-12-01", 
    "description": "Relaxation oscillators interacting via models of excitatory chemical synapses with sharp thresholds can have stable anti-phase as well as in-phase solutions. The mechanism for anti-phase demonstrated in this paper relies on the fact that, in a large class of neural models, excitatory input slows down the receiving oscillator over a portion of its trajectory. We analyze the effect of this \"virtual delay\" in an abstract model, and then show that the hypotheses of that model hold for widely used descriptions of bursting neurons.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00169564", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2547588", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1081642", 
        "issn": [
          "0303-6812", 
          "1432-1416"
        ], 
        "name": "Journal of Mathematical Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "name": "Anti-phase solutions in relaxation oscillators coupled through excitatory interactions", 
    "pagination": "261-280", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5ddfbe6c0d2a6ee70fdb67ebe94fbafae919d45f1b99c1219f6115fdb942dedd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "7897329"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7502105"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00169564"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019702404"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00169564", 
      "https://app.dimensions.ai/details/publication/pub.1019702404"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130808_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00169564"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00169564'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00169564'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00169564'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00169564'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      58 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00169564 schema:about N2260442b9be240ed80068765cf78dbb3
2 N37a7cc0292f94e0e9b77a2e18f984406
3 N588a428b3dc14360b53aeb9698343d24
4 N9b661eb98209462aa4cb2eeb93f577d9
5 Na59407b76af641bd9a456cb5c66c21b0
6 Naf87e6fbd7904d0381b3247c25462ef1
7 anzsrc-for:11
8 anzsrc-for:1109
9 schema:author N405e6ce793db4961b662d16786dc7315
10 schema:citation sg:pub.10.1007/bf00198772
11 sg:pub.10.1007/bf00275692
12 sg:pub.10.1007/bf00276920
13 sg:pub.10.1007/bf00327046
14 sg:pub.10.1007/bf00364154
15 sg:pub.10.1007/bf00364162
16 https://app.dimensions.ai/details/publication/pub.1080752573
17 https://app.dimensions.ai/details/publication/pub.1082214472
18 https://doi.org/10.1016/0020-7462(80)90024-4
19 https://doi.org/10.1016/0022-0396(87)90024-6
20 https://doi.org/10.1016/s0006-3495(72)86068-5
21 https://doi.org/10.1016/s0006-3495(81)84782-0
22 https://doi.org/10.1073/pnas.60.3.758
23 https://doi.org/10.1073/pnas.89.6.2471
24 https://doi.org/10.1090/qam/745099
25 https://doi.org/10.1113/jphysiol.1952.sp004764
26 https://doi.org/10.1137/0137022
27 https://doi.org/10.1137/0146006
28 https://doi.org/10.1137/0150009
29 https://doi.org/10.1137/0150098
30 https://doi.org/10.1162/neco.1992.4.1.84
31 https://doi.org/10.1209/0295-5075/23/5/011
32 https://doi.org/10.1364/josa.58.001133
33 schema:datePublished 1995-12
34 schema:datePublishedReg 1995-12-01
35 schema:description Relaxation oscillators interacting via models of excitatory chemical synapses with sharp thresholds can have stable anti-phase as well as in-phase solutions. The mechanism for anti-phase demonstrated in this paper relies on the fact that, in a large class of neural models, excitatory input slows down the receiving oscillator over a portion of its trajectory. We analyze the effect of this "virtual delay" in an abstract model, and then show that the hypotheses of that model hold for widely used descriptions of bursting neurons.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N6160bbf3743343978b8e34ab797848cb
40 N94ff3fc8bfbd48f8827134901e2ae8c0
41 sg:journal.1081642
42 schema:name Anti-phase solutions in relaxation oscillators coupled through excitatory interactions
43 schema:pagination 261-280
44 schema:productId N5b8df31bee7c4c30ae2a261a90648005
45 N82b5db4f8810495c9b2ea443ab3f0dd2
46 N88c460d6fd354ac19f04afd9898bc026
47 Nf016132492984ee5a6f01b0543237e5d
48 Nfb21ac6aa4104e11a35045396b3098ef
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019702404
50 https://doi.org/10.1007/bf00169564
51 schema:sdDatePublished 2019-04-11T13:53
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N9be172b0a7d94592821409937ddbfa7c
54 schema:url http://link.springer.com/10.1007/BF00169564
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N2260442b9be240ed80068765cf78dbb3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Models, Theoretical
60 rdf:type schema:DefinedTerm
61 N37a7cc0292f94e0e9b77a2e18f984406 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Models, Neurological
63 rdf:type schema:DefinedTerm
64 N405e6ce793db4961b662d16786dc7315 rdf:first sg:person.01244301604.43
65 rdf:rest Nda44798baaa24ea9bed398e06d696fac
66 N588a428b3dc14360b53aeb9698343d24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Neurons
68 rdf:type schema:DefinedTerm
69 N5b8df31bee7c4c30ae2a261a90648005 schema:name readcube_id
70 schema:value 5ddfbe6c0d2a6ee70fdb67ebe94fbafae919d45f1b99c1219f6115fdb942dedd
71 rdf:type schema:PropertyValue
72 N6160bbf3743343978b8e34ab797848cb schema:volumeNumber 33
73 rdf:type schema:PublicationVolume
74 N82b5db4f8810495c9b2ea443ab3f0dd2 schema:name pubmed_id
75 schema:value 7897329
76 rdf:type schema:PropertyValue
77 N88c460d6fd354ac19f04afd9898bc026 schema:name dimensions_id
78 schema:value pub.1019702404
79 rdf:type schema:PropertyValue
80 N94ff3fc8bfbd48f8827134901e2ae8c0 schema:issueNumber 3
81 rdf:type schema:PublicationIssue
82 N9b661eb98209462aa4cb2eeb93f577d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Synapses
84 rdf:type schema:DefinedTerm
85 N9be172b0a7d94592821409937ddbfa7c schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Na59407b76af641bd9a456cb5c66c21b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Animals
89 rdf:type schema:DefinedTerm
90 Naf87e6fbd7904d0381b3247c25462ef1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Oscillometry
92 rdf:type schema:DefinedTerm
93 Nda44798baaa24ea9bed398e06d696fac rdf:first sg:person.01146070413.11
94 rdf:rest rdf:nil
95 Nf016132492984ee5a6f01b0543237e5d schema:name nlm_unique_id
96 schema:value 7502105
97 rdf:type schema:PropertyValue
98 Nfb21ac6aa4104e11a35045396b3098ef schema:name doi
99 schema:value 10.1007/bf00169564
100 rdf:type schema:PropertyValue
101 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
102 schema:name Medical and Health Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
105 schema:name Neurosciences
106 rdf:type schema:DefinedTerm
107 sg:grant.2547588 http://pending.schema.org/fundedItem sg:pub.10.1007/bf00169564
108 rdf:type schema:MonetaryGrant
109 sg:journal.1081642 schema:issn 0303-6812
110 1432-1416
111 schema:name Journal of Mathematical Biology
112 rdf:type schema:Periodical
113 sg:person.01146070413.11 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
114 schema:familyName Somers
115 schema:givenName David
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146070413.11
117 rdf:type schema:Person
118 sg:person.01244301604.43 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
119 schema:familyName Kopell
120 schema:givenName Nancy
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244301604.43
122 rdf:type schema:Person
123 sg:pub.10.1007/bf00198772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007511494
124 https://doi.org/10.1007/bf00198772
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf00275692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024206714
127 https://doi.org/10.1007/bf00275692
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/bf00276920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028702639
130 https://doi.org/10.1007/bf00276920
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/bf00327046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028503470
133 https://doi.org/10.1007/bf00327046
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/bf00364154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052700723
136 https://doi.org/10.1007/bf00364154
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/bf00364162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023949379
139 https://doi.org/10.1007/bf00364162
140 rdf:type schema:CreativeWork
141 https://app.dimensions.ai/details/publication/pub.1080752573 schema:CreativeWork
142 https://app.dimensions.ai/details/publication/pub.1082214472 schema:CreativeWork
143 https://doi.org/10.1016/0020-7462(80)90024-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008259520
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/0022-0396(87)90024-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026276053
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/s0006-3495(72)86068-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008475623
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/s0006-3495(81)84782-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035440610
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1073/pnas.60.3.758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034806229
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1073/pnas.89.6.2471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044751121
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1090/qam/745099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059349176
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1113/jphysiol.1952.sp004764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038260469
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1137/0137022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062839858
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1137/0146006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062840416
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1137/0150009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062840785
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1137/0150098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062840874
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1162/neco.1992.4.1.84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007643028
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1209/0295-5075/23/5/011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064229617
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1364/josa.58.001133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065150923
172 rdf:type schema:CreativeWork
173 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
174 schema:name Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 45 Carleton Street, E25-61802139, Cambridge, MA, USA
175 Department of Cognitive and Neural Systems, Boston University, 111 Cummington Street, 02215, Boston, MA, USA
176 rdf:type schema:Organization
177 https://www.grid.ac/institutes/grid.189504.1 schema:alternateName Boston University
178 schema:name Department of Mathematics, Boston University, 111 Cummington Street, 02215, Boston, MA, USA
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...