Divergence of glutamate and glutamine aminoacylation pathways: Providing the evolutionary rationale for mischarging View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-05

AUTHORS

Kelley C. Rogers, Dieter Söll

ABSTRACT

Aminoacyl-tRNA for protein synthesis is produced through the action of a family of enzymes called aminoacyl-tRNA synthetases. A general rule is that there is one aminoacyl-tRNA synthetase for each of the standard 20 amino acids found in all cells. This is not universal, however, as a majority of prokaryotic organisms and eukaryotic organelles lack the enzyme glutaminyl-tRNA synthetase, which is responsible for forming Gln-tRNAGln in eukaryotes and in Gram-negative eubacteria. Instead, in organisms lacking glutaminyl-tRNA synthetase, Gln-tRNAGln is provided by misacylation of tRNAGln with glutamate by glutamyl-tRNA synthetase, followed by the conversion of tRNA-bound glutamate to glutamine by the enzyme Glu-tRNAGln amidotransferase. The fact that two different pathways exist for charging glutamine tRNA indicates that ancestral prokaryotic and eukaryotic organisms evolved different cellular mechanisms for incorporating glutamine into proteins. Here, we explore the basis for diverging pathways for aminoacylation of glutamine tRNA. We propose that stable retention of glutaminyl-tRNA synthetase in prokaryotic organisms following a horizontal gene transfer event from eukaryotic organisms (Lamour et al. 1994) was dependent on the evolving pool of glutamate and glutamine tRNAs in the organisms that acquired glutaminyl-tRNA synthetase by this mechanism. This model also addresses several unusual aspects of aminoacylation by glutamyl- and glutaminyl-tRNA synthetases that have been observed. More... »

PAGES

476-481

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00166615

DOI

http://dx.doi.org/10.1007/bf00166615

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006273348

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/7783222


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acylation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acyl-tRNA Synthetases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anticodon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Evolution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Eukaryotic Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Code", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glutamate-tRNA Ligase", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glutamic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glutamine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nitrogenous Group Transferases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prokaryotic Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Transfer, Amino Acyl", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Transfer, Gln", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Transfer, Glu", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transferases", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, P.O. Box 208114, 06520-8114, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rogers", 
        "givenName": "Kelley C.", 
        "id": "sg:person.01230030700.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230030700.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, P.O. Box 208114, 06520-8114, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "S\u00f6ll", 
        "givenName": "Dieter", 
        "id": "sg:person.012067245622.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012067245622.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/331662a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000903289", 
          "https://doi.org/10.1038/331662a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-437x(05)80203-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001605423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj0890082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003418574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj0890082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003418574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.91.18.8670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004716639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00166617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004919247", 
          "https://doi.org/10.1007/bf00166617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00166617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004919247", 
          "https://doi.org/10.1007/bf00166617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.61.1.229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012881155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.72.5.1909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020555335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/331187a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023534031", 
          "https://doi.org/10.1038/331187a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(92)90314-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026492493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/17.suppl.r1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027061720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.bi.48.070179.003125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029601705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/o86-044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031017479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.bi.62.070193.003435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034456509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-1119(93)90524-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035683602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-1119(93)90524-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035683602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0300-9084(93)90006-e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043907437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0300-9084(93)90006-e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043907437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0968-0004(92)90326-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051022561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0968-0004(92)90326-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051022561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/o82-055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051432291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.84.10.3156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052645729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00085a006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055160237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00214a021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055165585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00785a034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055188438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2479982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062539409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3144042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062594108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.7701318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062648970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.165.1.88-93.1986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062714681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.170.2.916-920.1988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062716723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078837863", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079480548", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079508303", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081521738", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081936013", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/9781555818333.ch26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088810036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/9781555818333.ch27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088810037"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995-05", 
    "datePublishedReg": "1995-05-01", 
    "description": "Aminoacyl-tRNA for protein synthesis is produced through the action of a family of enzymes called aminoacyl-tRNA synthetases. A general rule is that there is one aminoacyl-tRNA synthetase for each of the standard 20 amino acids found in all cells. This is not universal, however, as a majority of prokaryotic organisms and eukaryotic organelles lack the enzyme glutaminyl-tRNA synthetase, which is responsible for forming Gln-tRNAGln in eukaryotes and in Gram-negative eubacteria. Instead, in organisms lacking glutaminyl-tRNA synthetase, Gln-tRNAGln is provided by misacylation of tRNAGln with glutamate by glutamyl-tRNA synthetase, followed by the conversion of tRNA-bound glutamate to glutamine by the enzyme Glu-tRNAGln amidotransferase. The fact that two different pathways exist for charging glutamine tRNA indicates that ancestral prokaryotic and eukaryotic organisms evolved different cellular mechanisms for incorporating glutamine into proteins. Here, we explore the basis for diverging pathways for aminoacylation of glutamine tRNA. We propose that stable retention of glutaminyl-tRNA synthetase in prokaryotic organisms following a horizontal gene transfer event from eukaryotic organisms (Lamour et al. 1994) was dependent on the evolving pool of glutamate and glutamine tRNAs in the organisms that acquired glutaminyl-tRNA synthetase by this mechanism. This model also addresses several unusual aspects of aminoacylation by glutamyl- and glutaminyl-tRNA synthetases that have been observed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00166615", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1016442", 
        "issn": [
          "0022-2844", 
          "1432-1432"
        ], 
        "name": "Journal of Molecular Evolution", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "name": "Divergence of glutamate and glutamine aminoacylation pathways: Providing the evolutionary rationale for mischarging", 
    "pagination": "476-481", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00166615"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1de1ee9b03fc0ac92972daaa8a2d73feecf0a2eca46ecda5d4595e9b0f93685f"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006273348"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0360051"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "7783222"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00166615", 
      "https://app.dimensions.ai/details/publication/pub.1006273348"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119717_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00166615"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00166615'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00166615'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00166615'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00166615'


 

This table displays all metadata directly associated to this object as RDF triples.

237 TRIPLES      21 PREDICATES      78 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00166615 schema:about N219b8f27f9d2428a9357285d82366a8a
2 N2534077a63b04320b1a21483cd47ea01
3 N296bef605f7c4bec820c417cedf7265e
4 N2e4ea44986614e39a9ac3ce34c38326c
5 N2efb5e6860324ac6bed79f9157f61344
6 N4aae707c93d94f8fa5e475433a37148e
7 N503e3f30f39044fdb701433a80ee187e
8 N63b1201cde2a4b20a33b7be712fc3fbf
9 N67f40344f17b449685b4d96cc5bba4ea
10 N73fe201385ed4a5f83f854bcc51b84fc
11 N7578d8d185044041a6cd67b0529c4661
12 Nb1399b8bd8554fadaee294d1b5a827b0
13 Nc256db4e359b4c6dbac8ddf7f9684607
14 Ne37d091f23cf47da8176824657382aa7
15 Nec1fc57e0d0344e59a17a9518bdecfb0
16 Nffce9713ed32441d81dae41072d523d7
17 anzsrc-for:06
18 anzsrc-for:0601
19 schema:author N8d8cac179e774de4a42caa00c161e097
20 schema:citation sg:pub.10.1007/bf00166617
21 sg:pub.10.1038/331187a0
22 sg:pub.10.1038/331662a0
23 https://app.dimensions.ai/details/publication/pub.1078837863
24 https://app.dimensions.ai/details/publication/pub.1079480548
25 https://app.dimensions.ai/details/publication/pub.1079508303
26 https://app.dimensions.ai/details/publication/pub.1081521738
27 https://app.dimensions.ai/details/publication/pub.1081936013
28 https://doi.org/10.1016/0022-2836(92)90314-a
29 https://doi.org/10.1016/0300-9084(93)90006-e
30 https://doi.org/10.1016/0378-1119(93)90524-7
31 https://doi.org/10.1016/0968-0004(92)90326-5
32 https://doi.org/10.1016/s0959-437x(05)80203-5
33 https://doi.org/10.1021/bi00085a006
34 https://doi.org/10.1021/bi00214a021
35 https://doi.org/10.1021/bi00785a034
36 https://doi.org/10.1042/bj0890082
37 https://doi.org/10.1073/pnas.61.1.229
38 https://doi.org/10.1073/pnas.72.5.1909
39 https://doi.org/10.1073/pnas.84.10.3156
40 https://doi.org/10.1073/pnas.91.18.8670
41 https://doi.org/10.1093/nar/17.suppl.r1
42 https://doi.org/10.1126/science.2479982
43 https://doi.org/10.1126/science.3144042
44 https://doi.org/10.1126/science.7701318
45 https://doi.org/10.1128/9781555818333.ch26
46 https://doi.org/10.1128/9781555818333.ch27
47 https://doi.org/10.1128/jb.165.1.88-93.1986
48 https://doi.org/10.1128/jb.170.2.916-920.1988
49 https://doi.org/10.1139/o82-055
50 https://doi.org/10.1139/o86-044
51 https://doi.org/10.1146/annurev.bi.48.070179.003125
52 https://doi.org/10.1146/annurev.bi.62.070193.003435
53 schema:datePublished 1995-05
54 schema:datePublishedReg 1995-05-01
55 schema:description Aminoacyl-tRNA for protein synthesis is produced through the action of a family of enzymes called aminoacyl-tRNA synthetases. A general rule is that there is one aminoacyl-tRNA synthetase for each of the standard 20 amino acids found in all cells. This is not universal, however, as a majority of prokaryotic organisms and eukaryotic organelles lack the enzyme glutaminyl-tRNA synthetase, which is responsible for forming Gln-tRNAGln in eukaryotes and in Gram-negative eubacteria. Instead, in organisms lacking glutaminyl-tRNA synthetase, Gln-tRNAGln is provided by misacylation of tRNAGln with glutamate by glutamyl-tRNA synthetase, followed by the conversion of tRNA-bound glutamate to glutamine by the enzyme Glu-tRNAGln amidotransferase. The fact that two different pathways exist for charging glutamine tRNA indicates that ancestral prokaryotic and eukaryotic organisms evolved different cellular mechanisms for incorporating glutamine into proteins. Here, we explore the basis for diverging pathways for aminoacylation of glutamine tRNA. We propose that stable retention of glutaminyl-tRNA synthetase in prokaryotic organisms following a horizontal gene transfer event from eukaryotic organisms (Lamour et al. 1994) was dependent on the evolving pool of glutamate and glutamine tRNAs in the organisms that acquired glutaminyl-tRNA synthetase by this mechanism. This model also addresses several unusual aspects of aminoacylation by glutamyl- and glutaminyl-tRNA synthetases that have been observed.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree false
59 schema:isPartOf N25720e39ecea49c0a25b4ddc4590f441
60 Nfbe2e434aec742cb921a82cec241a8c6
61 sg:journal.1016442
62 schema:name Divergence of glutamate and glutamine aminoacylation pathways: Providing the evolutionary rationale for mischarging
63 schema:pagination 476-481
64 schema:productId N2833402cf0954dac9344ce406aa470de
65 N30ddca1646674514bcd302e8b0c1ddca
66 N53187aa35eb74c5e8399fc0b0a36edac
67 N931cf59455484aff913dc3cf3cfca941
68 Nb2606217d32442c584eb40aa7cab1bbc
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006273348
70 https://doi.org/10.1007/bf00166615
71 schema:sdDatePublished 2019-04-15T08:48
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N1c0937968add4da3a6f03860d25e00f5
74 schema:url http://link.springer.com/10.1007/BF00166615
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N1c0937968add4da3a6f03860d25e00f5 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N219b8f27f9d2428a9357285d82366a8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Biological Evolution
82 rdf:type schema:DefinedTerm
83 N2534077a63b04320b1a21483cd47ea01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name RNA, Transfer, Glu
85 rdf:type schema:DefinedTerm
86 N25720e39ecea49c0a25b4ddc4590f441 schema:volumeNumber 40
87 rdf:type schema:PublicationVolume
88 N2833402cf0954dac9344ce406aa470de schema:name doi
89 schema:value 10.1007/bf00166615
90 rdf:type schema:PropertyValue
91 N296bef605f7c4bec820c417cedf7265e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Glutamine
93 rdf:type schema:DefinedTerm
94 N2e4ea44986614e39a9ac3ce34c38326c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Amino Acyl-tRNA Synthetases
96 rdf:type schema:DefinedTerm
97 N2efb5e6860324ac6bed79f9157f61344 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Acylation
99 rdf:type schema:DefinedTerm
100 N30ddca1646674514bcd302e8b0c1ddca schema:name nlm_unique_id
101 schema:value 0360051
102 rdf:type schema:PropertyValue
103 N4aae707c93d94f8fa5e475433a37148e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Glutamate-tRNA Ligase
105 rdf:type schema:DefinedTerm
106 N503e3f30f39044fdb701433a80ee187e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name RNA, Transfer, Amino Acyl
108 rdf:type schema:DefinedTerm
109 N53187aa35eb74c5e8399fc0b0a36edac schema:name readcube_id
110 schema:value 1de1ee9b03fc0ac92972daaa8a2d73feecf0a2eca46ecda5d4595e9b0f93685f
111 rdf:type schema:PropertyValue
112 N63b1201cde2a4b20a33b7be712fc3fbf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Glutamic Acid
114 rdf:type schema:DefinedTerm
115 N67f40344f17b449685b4d96cc5bba4ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Eukaryotic Cells
117 rdf:type schema:DefinedTerm
118 N73fe201385ed4a5f83f854bcc51b84fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Models, Genetic
120 rdf:type schema:DefinedTerm
121 N7578d8d185044041a6cd67b0529c4661 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Prokaryotic Cells
123 rdf:type schema:DefinedTerm
124 N8d8cac179e774de4a42caa00c161e097 rdf:first sg:person.01230030700.02
125 rdf:rest N9eac32ab0caf4e6da88f47aeb057b1ca
126 N931cf59455484aff913dc3cf3cfca941 schema:name pubmed_id
127 schema:value 7783222
128 rdf:type schema:PropertyValue
129 N9eac32ab0caf4e6da88f47aeb057b1ca rdf:first sg:person.012067245622.45
130 rdf:rest rdf:nil
131 Nb1399b8bd8554fadaee294d1b5a827b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name RNA, Transfer, Gln
133 rdf:type schema:DefinedTerm
134 Nb2606217d32442c584eb40aa7cab1bbc schema:name dimensions_id
135 schema:value pub.1006273348
136 rdf:type schema:PropertyValue
137 Nc256db4e359b4c6dbac8ddf7f9684607 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Anticodon
139 rdf:type schema:DefinedTerm
140 Ne37d091f23cf47da8176824657382aa7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Genetic Code
142 rdf:type schema:DefinedTerm
143 Nec1fc57e0d0344e59a17a9518bdecfb0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Nitrogenous Group Transferases
145 rdf:type schema:DefinedTerm
146 Nfbe2e434aec742cb921a82cec241a8c6 schema:issueNumber 5
147 rdf:type schema:PublicationIssue
148 Nffce9713ed32441d81dae41072d523d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Transferases
150 rdf:type schema:DefinedTerm
151 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
152 schema:name Biological Sciences
153 rdf:type schema:DefinedTerm
154 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
155 schema:name Biochemistry and Cell Biology
156 rdf:type schema:DefinedTerm
157 sg:journal.1016442 schema:issn 0022-2844
158 1432-1432
159 schema:name Journal of Molecular Evolution
160 rdf:type schema:Periodical
161 sg:person.012067245622.45 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
162 schema:familyName Söll
163 schema:givenName Dieter
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012067245622.45
165 rdf:type schema:Person
166 sg:person.01230030700.02 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
167 schema:familyName Rogers
168 schema:givenName Kelley C.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230030700.02
170 rdf:type schema:Person
171 sg:pub.10.1007/bf00166617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004919247
172 https://doi.org/10.1007/bf00166617
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/331187a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023534031
175 https://doi.org/10.1038/331187a0
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/331662a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000903289
178 https://doi.org/10.1038/331662a0
179 rdf:type schema:CreativeWork
180 https://app.dimensions.ai/details/publication/pub.1078837863 schema:CreativeWork
181 https://app.dimensions.ai/details/publication/pub.1079480548 schema:CreativeWork
182 https://app.dimensions.ai/details/publication/pub.1079508303 schema:CreativeWork
183 https://app.dimensions.ai/details/publication/pub.1081521738 schema:CreativeWork
184 https://app.dimensions.ai/details/publication/pub.1081936013 schema:CreativeWork
185 https://doi.org/10.1016/0022-2836(92)90314-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1026492493
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/0300-9084(93)90006-e schema:sameAs https://app.dimensions.ai/details/publication/pub.1043907437
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/0378-1119(93)90524-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035683602
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/0968-0004(92)90326-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051022561
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/s0959-437x(05)80203-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001605423
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1021/bi00085a006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055160237
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1021/bi00214a021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055165585
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1021/bi00785a034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055188438
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1042/bj0890082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003418574
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1073/pnas.61.1.229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012881155
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1073/pnas.72.5.1909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020555335
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1073/pnas.84.10.3156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052645729
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1073/pnas.91.18.8670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004716639
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/nar/17.suppl.r1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027061720
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1126/science.2479982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062539409
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1126/science.3144042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062594108
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1126/science.7701318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062648970
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1128/9781555818333.ch26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088810036
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1128/9781555818333.ch27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088810037
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1128/jb.165.1.88-93.1986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062714681
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1128/jb.170.2.916-920.1988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062716723
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1139/o82-055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051432291
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1139/o86-044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031017479
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1146/annurev.bi.48.070179.003125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029601705
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1146/annurev.bi.62.070193.003435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034456509
234 rdf:type schema:CreativeWork
235 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
236 schema:name Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, P.O. Box 208114, 06520-8114, New Haven, CT, USA
237 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...