Multiple pulse interactions and averaging in systems of coupled neural oscillators View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-01

AUTHORS

G. B. Ermentrout, N. Kopell

ABSTRACT

Oscillators coupled strongly are capable of complicated behavior which may be pathological for biological control systems. Nevertheless, strong coupling may be needed to prevent asynchrony. We discuss how some neural networks may be designed to achieve only simple locking behavior when the coupling is strong. The design is based on the fact that the method of averaging produces equations that are capable only of locking or drift, not pathological complexity. Furthermore, it is shown that oscillators that interact by means of multiple pulses per cycle, dispersed around the cycle, behave like averaged equations, even if the number of pulses is small. We discuss the biological intuition behind this scheme, and show numerically that it works when the oscillators are taken to be composites, each unit of which is governed by a well-known model of a neural oscillator. Finally, we describe numerical methods for computing from equations for coupled limit cycle oscillators the averaged coupling functions of our theory. More... »

PAGES

195-217

References to SciGraph publications

  • 1985-12. The behavior of rings of coupled oscillators in JOURNAL OF MATHEMATICAL BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00160535

    DOI

    http://dx.doi.org/10.1007/bf00160535

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1016451817


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Pittsburgh", 
              "id": "https://www.grid.ac/institutes/grid.21925.3d", 
              "name": [
                "Department of Mathematics, University of Pittsburgh, 15260, Pittsburgh, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ermentrout", 
            "givenName": "G. B.", 
            "id": "sg:person.01327661201.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327661201.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Boston University", 
              "id": "https://www.grid.ac/institutes/grid.189504.1", 
              "name": [
                "Department of Mathematics, Boston University, Boston, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kopell", 
            "givenName": "N.", 
            "id": "sg:person.01244301604.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244301604.43"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0025-5564(88)90059-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005805544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0006-3495(72)86068-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008475623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(90)90007-c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025576267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(90)90007-c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025576267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0006-3495(81)84782-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035440610"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00276558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050929887", 
              "https://doi.org/10.1007/bf00276558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00276558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050929887", 
              "https://doi.org/10.1007/bf00276558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0150009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062840785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0515019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062847585"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1512/iumj.1972.21.21017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067511293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082104993", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1991-01", 
        "datePublishedReg": "1991-01-01", 
        "description": "Oscillators coupled strongly are capable of complicated behavior which may be pathological for biological control systems. Nevertheless, strong coupling may be needed to prevent asynchrony. We discuss how some neural networks may be designed to achieve only simple locking behavior when the coupling is strong. The design is based on the fact that the method of averaging produces equations that are capable only of locking or drift, not pathological complexity. Furthermore, it is shown that oscillators that interact by means of multiple pulses per cycle, dispersed around the cycle, behave like averaged equations, even if the number of pulses is small. We discuss the biological intuition behind this scheme, and show numerically that it works when the oscillators are taken to be composites, each unit of which is governed by a well-known model of a neural oscillator. Finally, we describe numerical methods for computing from equations for coupled limit cycle oscillators the averaged coupling functions of our theory.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf00160535", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1081642", 
            "issn": [
              "0303-6812", 
              "1432-1416"
            ], 
            "name": "Journal of Mathematical Biology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "29"
          }
        ], 
        "name": "Multiple pulse interactions and averaging in systems of coupled neural oscillators", 
        "pagination": "195-217", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00160535"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4e630f2c007220b84f5fec23efe9a844694bc68403024d4f48fd10e8d7be4364"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1016451817"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00160535", 
          "https://app.dimensions.ai/details/publication/pub.1016451817"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T08:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119741_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF00160535"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00160535'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00160535'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00160535'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00160535'


     

    This table displays all metadata directly associated to this object as RDF triples.

    98 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00160535 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N45e159313d774042a98944f116536054
    4 schema:citation sg:pub.10.1007/bf00276558
    5 https://app.dimensions.ai/details/publication/pub.1082104993
    6 https://doi.org/10.1016/0025-5564(88)90059-4
    7 https://doi.org/10.1016/0167-2789(90)90007-c
    8 https://doi.org/10.1016/s0006-3495(72)86068-5
    9 https://doi.org/10.1016/s0006-3495(81)84782-0
    10 https://doi.org/10.1137/0150009
    11 https://doi.org/10.1137/0515019
    12 https://doi.org/10.1512/iumj.1972.21.21017
    13 schema:datePublished 1991-01
    14 schema:datePublishedReg 1991-01-01
    15 schema:description Oscillators coupled strongly are capable of complicated behavior which may be pathological for biological control systems. Nevertheless, strong coupling may be needed to prevent asynchrony. We discuss how some neural networks may be designed to achieve only simple locking behavior when the coupling is strong. The design is based on the fact that the method of averaging produces equations that are capable only of locking or drift, not pathological complexity. Furthermore, it is shown that oscillators that interact by means of multiple pulses per cycle, dispersed around the cycle, behave like averaged equations, even if the number of pulses is small. We discuss the biological intuition behind this scheme, and show numerically that it works when the oscillators are taken to be composites, each unit of which is governed by a well-known model of a neural oscillator. Finally, we describe numerical methods for computing from equations for coupled limit cycle oscillators the averaged coupling functions of our theory.
    16 schema:genre research_article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N2b1942b5c6d043b09e5f18b24325e3fe
    20 Nec4db6e0e3654008b0b80bb95d52caa3
    21 sg:journal.1081642
    22 schema:name Multiple pulse interactions and averaging in systems of coupled neural oscillators
    23 schema:pagination 195-217
    24 schema:productId N3f14b256b2cc4b85831c245bec08952b
    25 N98f0345a41ab4e288e2cb2059ed568da
    26 Nc8852e72834f45c4826ab483b62aca4b
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016451817
    28 https://doi.org/10.1007/bf00160535
    29 schema:sdDatePublished 2019-04-15T08:52
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher N461f3f5e59b14364a572c9fd2f2eef99
    32 schema:url http://link.springer.com/10.1007/BF00160535
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset articles
    35 rdf:type schema:ScholarlyArticle
    36 N2b1942b5c6d043b09e5f18b24325e3fe schema:volumeNumber 29
    37 rdf:type schema:PublicationVolume
    38 N3f14b256b2cc4b85831c245bec08952b schema:name doi
    39 schema:value 10.1007/bf00160535
    40 rdf:type schema:PropertyValue
    41 N45e159313d774042a98944f116536054 rdf:first sg:person.01327661201.52
    42 rdf:rest Nc25f489bcebc4626955b9386361b7a37
    43 N461f3f5e59b14364a572c9fd2f2eef99 schema:name Springer Nature - SN SciGraph project
    44 rdf:type schema:Organization
    45 N98f0345a41ab4e288e2cb2059ed568da schema:name readcube_id
    46 schema:value 4e630f2c007220b84f5fec23efe9a844694bc68403024d4f48fd10e8d7be4364
    47 rdf:type schema:PropertyValue
    48 Nc25f489bcebc4626955b9386361b7a37 rdf:first sg:person.01244301604.43
    49 rdf:rest rdf:nil
    50 Nc8852e72834f45c4826ab483b62aca4b schema:name dimensions_id
    51 schema:value pub.1016451817
    52 rdf:type schema:PropertyValue
    53 Nec4db6e0e3654008b0b80bb95d52caa3 schema:issueNumber 3
    54 rdf:type schema:PublicationIssue
    55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    56 schema:name Mathematical Sciences
    57 rdf:type schema:DefinedTerm
    58 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Applied Mathematics
    60 rdf:type schema:DefinedTerm
    61 sg:journal.1081642 schema:issn 0303-6812
    62 1432-1416
    63 schema:name Journal of Mathematical Biology
    64 rdf:type schema:Periodical
    65 sg:person.01244301604.43 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
    66 schema:familyName Kopell
    67 schema:givenName N.
    68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244301604.43
    69 rdf:type schema:Person
    70 sg:person.01327661201.52 schema:affiliation https://www.grid.ac/institutes/grid.21925.3d
    71 schema:familyName Ermentrout
    72 schema:givenName G. B.
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327661201.52
    74 rdf:type schema:Person
    75 sg:pub.10.1007/bf00276558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050929887
    76 https://doi.org/10.1007/bf00276558
    77 rdf:type schema:CreativeWork
    78 https://app.dimensions.ai/details/publication/pub.1082104993 schema:CreativeWork
    79 https://doi.org/10.1016/0025-5564(88)90059-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005805544
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1016/0167-2789(90)90007-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1025576267
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1016/s0006-3495(72)86068-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008475623
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1016/s0006-3495(81)84782-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035440610
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1137/0150009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062840785
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1137/0515019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062847585
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1512/iumj.1972.21.21017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067511293
    92 rdf:type schema:CreativeWork
    93 https://www.grid.ac/institutes/grid.189504.1 schema:alternateName Boston University
    94 schema:name Department of Mathematics, Boston University, Boston, USA
    95 rdf:type schema:Organization
    96 https://www.grid.ac/institutes/grid.21925.3d schema:alternateName University of Pittsburgh
    97 schema:name Department of Mathematics, University of Pittsburgh, 15260, Pittsburgh, PA, USA
    98 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...