Multiple pulse interactions and averaging in systems of coupled neural oscillators View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-01

AUTHORS

G. B. Ermentrout, N. Kopell

ABSTRACT

Oscillators coupled strongly are capable of complicated behavior which may be pathological for biological control systems. Nevertheless, strong coupling may be needed to prevent asynchrony. We discuss how some neural networks may be designed to achieve only simple locking behavior when the coupling is strong. The design is based on the fact that the method of averaging produces equations that are capable only of locking or drift, not pathological complexity. Furthermore, it is shown that oscillators that interact by means of multiple pulses per cycle, dispersed around the cycle, behave like averaged equations, even if the number of pulses is small. We discuss the biological intuition behind this scheme, and show numerically that it works when the oscillators are taken to be composites, each unit of which is governed by a well-known model of a neural oscillator. Finally, we describe numerical methods for computing from equations for coupled limit cycle oscillators the averaged coupling functions of our theory. More... »

PAGES

195-217

References to SciGraph publications

  • 1985-12. The behavior of rings of coupled oscillators in JOURNAL OF MATHEMATICAL BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00160535

    DOI

    http://dx.doi.org/10.1007/bf00160535

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1016451817


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Pittsburgh", 
              "id": "https://www.grid.ac/institutes/grid.21925.3d", 
              "name": [
                "Department of Mathematics, University of Pittsburgh, 15260, Pittsburgh, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ermentrout", 
            "givenName": "G. B.", 
            "id": "sg:person.01327661201.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327661201.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Boston University", 
              "id": "https://www.grid.ac/institutes/grid.189504.1", 
              "name": [
                "Department of Mathematics, Boston University, Boston, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kopell", 
            "givenName": "N.", 
            "id": "sg:person.01244301604.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244301604.43"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0025-5564(88)90059-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005805544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0006-3495(72)86068-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008475623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(90)90007-c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025576267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(90)90007-c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025576267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0006-3495(81)84782-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035440610"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00276558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050929887", 
              "https://doi.org/10.1007/bf00276558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00276558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050929887", 
              "https://doi.org/10.1007/bf00276558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0150009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062840785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0515019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062847585"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1512/iumj.1972.21.21017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067511293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082104993", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1991-01", 
        "datePublishedReg": "1991-01-01", 
        "description": "Oscillators coupled strongly are capable of complicated behavior which may be pathological for biological control systems. Nevertheless, strong coupling may be needed to prevent asynchrony. We discuss how some neural networks may be designed to achieve only simple locking behavior when the coupling is strong. The design is based on the fact that the method of averaging produces equations that are capable only of locking or drift, not pathological complexity. Furthermore, it is shown that oscillators that interact by means of multiple pulses per cycle, dispersed around the cycle, behave like averaged equations, even if the number of pulses is small. We discuss the biological intuition behind this scheme, and show numerically that it works when the oscillators are taken to be composites, each unit of which is governed by a well-known model of a neural oscillator. Finally, we describe numerical methods for computing from equations for coupled limit cycle oscillators the averaged coupling functions of our theory.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf00160535", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1081642", 
            "issn": [
              "0303-6812", 
              "1432-1416"
            ], 
            "name": "Journal of Mathematical Biology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "29"
          }
        ], 
        "name": "Multiple pulse interactions and averaging in systems of coupled neural oscillators", 
        "pagination": "195-217", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00160535"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4e630f2c007220b84f5fec23efe9a844694bc68403024d4f48fd10e8d7be4364"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1016451817"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00160535", 
          "https://app.dimensions.ai/details/publication/pub.1016451817"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T08:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119741_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF00160535"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00160535'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00160535'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00160535'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00160535'


     

    This table displays all metadata directly associated to this object as RDF triples.

    98 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00160535 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N579037d74fc54002b05c562c7920d84e
    4 schema:citation sg:pub.10.1007/bf00276558
    5 https://app.dimensions.ai/details/publication/pub.1082104993
    6 https://doi.org/10.1016/0025-5564(88)90059-4
    7 https://doi.org/10.1016/0167-2789(90)90007-c
    8 https://doi.org/10.1016/s0006-3495(72)86068-5
    9 https://doi.org/10.1016/s0006-3495(81)84782-0
    10 https://doi.org/10.1137/0150009
    11 https://doi.org/10.1137/0515019
    12 https://doi.org/10.1512/iumj.1972.21.21017
    13 schema:datePublished 1991-01
    14 schema:datePublishedReg 1991-01-01
    15 schema:description Oscillators coupled strongly are capable of complicated behavior which may be pathological for biological control systems. Nevertheless, strong coupling may be needed to prevent asynchrony. We discuss how some neural networks may be designed to achieve only simple locking behavior when the coupling is strong. The design is based on the fact that the method of averaging produces equations that are capable only of locking or drift, not pathological complexity. Furthermore, it is shown that oscillators that interact by means of multiple pulses per cycle, dispersed around the cycle, behave like averaged equations, even if the number of pulses is small. We discuss the biological intuition behind this scheme, and show numerically that it works when the oscillators are taken to be composites, each unit of which is governed by a well-known model of a neural oscillator. Finally, we describe numerical methods for computing from equations for coupled limit cycle oscillators the averaged coupling functions of our theory.
    16 schema:genre research_article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N54df5bc67c7a415a8f57cca34053a72f
    20 N7018b6eca6d645d488c1b65f682dbb4e
    21 sg:journal.1081642
    22 schema:name Multiple pulse interactions and averaging in systems of coupled neural oscillators
    23 schema:pagination 195-217
    24 schema:productId N7c22d9b1194345409dde6bf27b47f8a3
    25 Nd673b87385ce40c095ef3435d92a42d8
    26 Nd81dc46c5cb14a38933eacde934eb72d
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016451817
    28 https://doi.org/10.1007/bf00160535
    29 schema:sdDatePublished 2019-04-15T08:52
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher N09a135d245b64c6989c8971dd4504f7e
    32 schema:url http://link.springer.com/10.1007/BF00160535
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset articles
    35 rdf:type schema:ScholarlyArticle
    36 N09a135d245b64c6989c8971dd4504f7e schema:name Springer Nature - SN SciGraph project
    37 rdf:type schema:Organization
    38 N54df5bc67c7a415a8f57cca34053a72f schema:issueNumber 3
    39 rdf:type schema:PublicationIssue
    40 N579037d74fc54002b05c562c7920d84e rdf:first sg:person.01327661201.52
    41 rdf:rest Ncfbebaa0a1234b79ac755d163531dec6
    42 N7018b6eca6d645d488c1b65f682dbb4e schema:volumeNumber 29
    43 rdf:type schema:PublicationVolume
    44 N7c22d9b1194345409dde6bf27b47f8a3 schema:name readcube_id
    45 schema:value 4e630f2c007220b84f5fec23efe9a844694bc68403024d4f48fd10e8d7be4364
    46 rdf:type schema:PropertyValue
    47 Ncfbebaa0a1234b79ac755d163531dec6 rdf:first sg:person.01244301604.43
    48 rdf:rest rdf:nil
    49 Nd673b87385ce40c095ef3435d92a42d8 schema:name doi
    50 schema:value 10.1007/bf00160535
    51 rdf:type schema:PropertyValue
    52 Nd81dc46c5cb14a38933eacde934eb72d schema:name dimensions_id
    53 schema:value pub.1016451817
    54 rdf:type schema:PropertyValue
    55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    56 schema:name Mathematical Sciences
    57 rdf:type schema:DefinedTerm
    58 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Applied Mathematics
    60 rdf:type schema:DefinedTerm
    61 sg:journal.1081642 schema:issn 0303-6812
    62 1432-1416
    63 schema:name Journal of Mathematical Biology
    64 rdf:type schema:Periodical
    65 sg:person.01244301604.43 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
    66 schema:familyName Kopell
    67 schema:givenName N.
    68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244301604.43
    69 rdf:type schema:Person
    70 sg:person.01327661201.52 schema:affiliation https://www.grid.ac/institutes/grid.21925.3d
    71 schema:familyName Ermentrout
    72 schema:givenName G. B.
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327661201.52
    74 rdf:type schema:Person
    75 sg:pub.10.1007/bf00276558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050929887
    76 https://doi.org/10.1007/bf00276558
    77 rdf:type schema:CreativeWork
    78 https://app.dimensions.ai/details/publication/pub.1082104993 schema:CreativeWork
    79 https://doi.org/10.1016/0025-5564(88)90059-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005805544
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1016/0167-2789(90)90007-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1025576267
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1016/s0006-3495(72)86068-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008475623
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1016/s0006-3495(81)84782-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035440610
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1137/0150009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062840785
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1137/0515019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062847585
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1512/iumj.1972.21.21017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067511293
    92 rdf:type schema:CreativeWork
    93 https://www.grid.ac/institutes/grid.189504.1 schema:alternateName Boston University
    94 schema:name Department of Mathematics, Boston University, Boston, USA
    95 rdf:type schema:Organization
    96 https://www.grid.ac/institutes/grid.21925.3d schema:alternateName University of Pittsburgh
    97 schema:name Department of Mathematics, University of Pittsburgh, 15260, Pittsburgh, PA, USA
    98 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...