Production of RNA by a polymerase protein encapsulated within phospholipid vesicles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-12

AUTHORS

Ajoy C. Chakrabarti, Ronald R. Breaker, Gerald F. Joyce, David W. Deamer

ABSTRACT

Catalyzed polymerization reactions represent a primary anabolic activity of all cells. It can be assumed that early cells carried out such reactions, in which macromolecular catalysts were encapsulated within some type of boundary membrane. In the experiments described here, we show that a template-independent RNA polymerase (polynucleotide phosphorylase) can be encapsulated in dimyristoyl phosphatidylcholine vesicles without substrate. When the substrate adenosine diphosphate (ADP) was provided externally, long-chain RNA polymers were synthesized within the vesicles. Substrate flux was maximized by maintaining the vesicles at the phase transition temperature of the component lipid. A protease was introduced externally as an additional control. Free enzyme was inactivated under identical conditions. RNA products were visualized in situ by ethidium bromide fluorescence. The products were harvested from the liposomes, radiolabeled, and analyzed by polyacrylamide gel electrophoresis. Encapsulated catalysts represent a model for primitive cellular systems in which an RNA polymerase was entrapped within a protected microenvironment. More... »

PAGES

555-559

References to SciGraph publications

  • 1982-05. Encapsulation of macromolecules by lipid vesicles under simulated prebiotic conditions in JOURNAL OF MOLECULAR EVOLUTION
  • 1992-05. Autocatalytic self-replicating micelles as models for prebiotic structures in NATURE
  • 1989-03. RNA evolution and the origins of life in NATURE
  • 1988-09. The chemical logic of a minimum protocell in ORIGINS OF LIFE AND EVOLUTION OF BIOSPHERES
  • 1990-03. Origins of life: An operational definition in ORIGINS OF LIFE AND EVOLUTION OF BIOSPHERES
  • Journal

    TITLE

    Journal of Molecular Evolution

    ISSUE

    6

    VOLUME

    39

    Related Patents

  • In Vitro Evolution In Microfluidic Systems
  • In Vitro Evolution In Microfluidic Systems
  • A Method For Increasing The Concentration Of A Nucleic Acid Molecule
  • Fluorocarbon Emulsion Stabilizing Surfactants
  • Method Of Encapsulating A Molecule And A Microbead
  • Manipulation Of Fluids And Reactions In Microfluidic Systems
  • Compartmentalised Screening By Microfluidic Control
  • In Vitro Sorting Method
  • Manipulation Of Fluids, Fluid Components And Reactions In Microfluidic Systems
  • In Vitro Evolution In Microfluidic Systems
  • Selection By Compartmentalised Screening
  • Digital Analyte Analysis
  • Emulsion Compositions
  • Systems For Handling Microfludic Droplets
  • Selection By Compartmentalised Screening
  • Bead Emulsion Nucleic Acid Amplification
  • In Vitro Evolution In Microfluidic Systems
  • Fluorocarbon Emulsion Stabilizing Surfactants
  • Selection By Compartmentalised Screening
  • Digital Analyte Analysis
  • Manipulation Of Fluids And Reactions In Microfluidic Systems
  • Bead Emulsion Nucleic Acid Amplification
  • Manipulation Of Fluids And Reactions In Microfluidic Systems
  • In Vitro Sorting Method
  • Selection Of Compartmentalized Screening Method
  • Sandwich Assays In Droplets
  • Compartmentalised Screening By Microfluidic Control
  • Digital Analyte Analysis
  • Digital Analyte Analysis
  • Microfluidic Devices And Methods Of Use In The Formation And Control Of Nanoreactors
  • Sample Multiplexing
  • Manipulating Droplet Size
  • In Vitro Evolution In Microfluidic Systems
  • Optical Sorting Method
  • Compartmentalised Combinatorial Chemistry By Microfluidic Control
  • Compartmentalised Combinatorial Chemistry By Microfluidic Control
  • Compartmentalized Screening By Microfluidic Control
  • Manipulation Of Fluids, Fluid Components And Reactions In Microfluidic Systems
  • Microfluidic Devices And Methods Of Use In The Formation And Control Of Nanoreactors
  • Vitro Evolution In Microfluidic Systems
  • In Vitro Evolution In Microfluidic Systems
  • Microfluidic Devices And Methods Of Use In The Formation And Control Of Nanoreactors
  • Manipulation Of Microfluidic Droplets
  • Digital Analyte Analysis
  • Compositions And Methods For Molecular Labeling
  • Method Of Synthesis And Testing Of Combinatorial Libraries Using Microcapsules
  • In Vitro Sorting Method
  • In Vitro Sorting Method
  • Methods For Forming Mixed Droplets
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00160400

    DOI

    http://dx.doi.org/10.1007/bf00160400

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002468314

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/7528810


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adenosine Diphosphate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA-Directed RNA Polymerases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Dimyristoylphosphatidylcholine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electrophoresis, Polyacrylamide Gel", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluorescence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Liposomes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of California, Santa Cruz", 
              "id": "https://www.grid.ac/institutes/grid.205975.c", 
              "name": [
                "Department of Chemistry and Biochemistry, University of California, 95064, Santa Cruz, Santa Cruz, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chakrabarti", 
            "givenName": "Ajoy C.", 
            "id": "sg:person.01046310514.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046310514.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Scripps Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.214007.0", 
              "name": [
                "Departments of Chemistry and Molecular Biology, The Scripps Research Institute, 10666 N. Torrey Pines Road, 92037, CALa Jolla, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Breaker", 
            "givenName": "Ronald R.", 
            "id": "sg:person.01341544734.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341544734.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Scripps Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.214007.0", 
              "name": [
                "Departments of Chemistry and Molecular Biology, The Scripps Research Institute, 10666 N. Torrey Pines Road, 92037, CALa Jolla, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Joyce", 
            "givenName": "Gerald F.", 
            "id": "sg:person.01162145017.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162145017.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, Santa Cruz", 
              "id": "https://www.grid.ac/institutes/grid.205975.c", 
              "name": [
                "Department of Chemistry and Biochemistry, University of California, 95064, Santa Cruz, Santa Cruz, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Deamer", 
            "givenName": "David W.", 
            "id": "sg:person.01245334451.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245334451.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0006-3495(90)82452-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000435580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01808273", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003430610", 
              "https://doi.org/10.1007/bf01808273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01808273", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003430610", 
              "https://doi.org/10.1007/bf01808273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0005-2736(78)90176-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014199268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0005-2736(78)90176-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014199268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0009-3084(86)90069-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019773812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0009-3084(86)90069-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019773812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01733047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023332651", 
              "https://doi.org/10.1007/bf01733047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01733047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023332651", 
              "https://doi.org/10.1007/bf01733047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/357057a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026419509", 
              "https://doi.org/10.1038/357057a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0005-2736(85)90521-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027777621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0005-2736(85)90521-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027777621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0005-2736(92)90308-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030920419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0005-2736(92)90308-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030920419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0005-2736(73)90314-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038310374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0005-2736(73)90314-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038310374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01804674", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039053381", 
              "https://doi.org/10.1007/bf01804674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01804674", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039053381", 
              "https://doi.org/10.1007/bf01804674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/338217a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044933284", 
              "https://doi.org/10.1038/338217a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/338217a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044933284", 
              "https://doi.org/10.1038/338217a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bi00611a014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055182624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074667589", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1075220883", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1994-12", 
        "datePublishedReg": "1994-12-01", 
        "description": "Catalyzed polymerization reactions represent a primary anabolic activity of all cells. It can be assumed that early cells carried out such reactions, in which macromolecular catalysts were encapsulated within some type of boundary membrane. In the experiments described here, we show that a template-independent RNA polymerase (polynucleotide phosphorylase) can be encapsulated in dimyristoyl phosphatidylcholine vesicles without substrate. When the substrate adenosine diphosphate (ADP) was provided externally, long-chain RNA polymers were synthesized within the vesicles. Substrate flux was maximized by maintaining the vesicles at the phase transition temperature of the component lipid. A protease was introduced externally as an additional control. Free enzyme was inactivated under identical conditions. RNA products were visualized in situ by ethidium bromide fluorescence. The products were harvested from the liposomes, radiolabeled, and analyzed by polyacrylamide gel electrophoresis. Encapsulated catalysts represent a model for primitive cellular systems in which an RNA polymerase was entrapped within a protected microenvironment.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf00160400", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1016442", 
            "issn": [
              "0022-2844", 
              "1432-1432"
            ], 
            "name": "Journal of Molecular Evolution", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "39"
          }
        ], 
        "name": "Production of RNA by a polymerase protein encapsulated within phospholipid vesicles", 
        "pagination": "555-559", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00160400"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0bc05b21468099205adf46f543f4f2203dbaa000714bf42d1219094e7d38c881"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002468314"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0360051"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "7528810"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00160400", 
          "https://app.dimensions.ai/details/publication/pub.1002468314"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T08:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119754_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF00160400"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00160400'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00160400'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00160400'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00160400'


     

    This table displays all metadata directly associated to this object as RDF triples.

    166 TRIPLES      21 PREDICATES      50 URIs      28 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00160400 schema:about N143496de36c440478c68dcb9a698117c
    2 N69e4602d13c3470da63686b2e91c2a0b
    3 N83472d24e1f04fd886b953c764b679cf
    4 Nbc6a1db078ca4060952d05cbbef1dd37
    5 Nc9e020a55da34a5ba4b4c6c2499c2d1c
    6 Ncab1a658c84b498b9e2c10ea9c9bd4d6
    7 Nd2ffe907646f4464886d96cd7b4e8749
    8 anzsrc-for:06
    9 anzsrc-for:0601
    10 schema:author N506d7c5c13ee41c2acdae96fd47caa0f
    11 schema:citation sg:pub.10.1007/bf01733047
    12 sg:pub.10.1007/bf01804674
    13 sg:pub.10.1007/bf01808273
    14 sg:pub.10.1038/338217a0
    15 sg:pub.10.1038/357057a0
    16 https://app.dimensions.ai/details/publication/pub.1074667589
    17 https://app.dimensions.ai/details/publication/pub.1075220883
    18 https://doi.org/10.1016/0005-2736(73)90314-3
    19 https://doi.org/10.1016/0005-2736(78)90176-1
    20 https://doi.org/10.1016/0005-2736(85)90521-8
    21 https://doi.org/10.1016/0005-2736(92)90308-9
    22 https://doi.org/10.1016/0009-3084(86)90069-1
    23 https://doi.org/10.1016/s0006-3495(90)82452-8
    24 https://doi.org/10.1021/bi00611a014
    25 schema:datePublished 1994-12
    26 schema:datePublishedReg 1994-12-01
    27 schema:description Catalyzed polymerization reactions represent a primary anabolic activity of all cells. It can be assumed that early cells carried out such reactions, in which macromolecular catalysts were encapsulated within some type of boundary membrane. In the experiments described here, we show that a template-independent RNA polymerase (polynucleotide phosphorylase) can be encapsulated in dimyristoyl phosphatidylcholine vesicles without substrate. When the substrate adenosine diphosphate (ADP) was provided externally, long-chain RNA polymers were synthesized within the vesicles. Substrate flux was maximized by maintaining the vesicles at the phase transition temperature of the component lipid. A protease was introduced externally as an additional control. Free enzyme was inactivated under identical conditions. RNA products were visualized in situ by ethidium bromide fluorescence. The products were harvested from the liposomes, radiolabeled, and analyzed by polyacrylamide gel electrophoresis. Encapsulated catalysts represent a model for primitive cellular systems in which an RNA polymerase was entrapped within a protected microenvironment.
    28 schema:genre research_article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree false
    31 schema:isPartOf Nb323c437d6124d6b8aa7dc5bb1da03c3
    32 Ncf94406b1b3f4843bdf848c48459694a
    33 sg:journal.1016442
    34 schema:name Production of RNA by a polymerase protein encapsulated within phospholipid vesicles
    35 schema:pagination 555-559
    36 schema:productId N0d96e8def7d44c6cb0d3c2cbe4955f74
    37 N26abd06c32e6487f9648f554cab92430
    38 N5d3b0ea004df40fcbf8b130935c6b15f
    39 Nae57d1dbab0f4d2f809a8250757517c6
    40 Neb317df2f3f141d2a34e489ec1cf0060
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002468314
    42 https://doi.org/10.1007/bf00160400
    43 schema:sdDatePublished 2019-04-15T08:54
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher Ncab17c596d0a4e6c9b167c0063d7b785
    46 schema:url http://link.springer.com/10.1007/BF00160400
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N0d96e8def7d44c6cb0d3c2cbe4955f74 schema:name dimensions_id
    51 schema:value pub.1002468314
    52 rdf:type schema:PropertyValue
    53 N143496de36c440478c68dcb9a698117c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    54 schema:name Fluorescence
    55 rdf:type schema:DefinedTerm
    56 N26abd06c32e6487f9648f554cab92430 schema:name nlm_unique_id
    57 schema:value 0360051
    58 rdf:type schema:PropertyValue
    59 N506d7c5c13ee41c2acdae96fd47caa0f rdf:first sg:person.01046310514.43
    60 rdf:rest N5f9a2af5fb464e87bce330ccff35ccd6
    61 N5d3b0ea004df40fcbf8b130935c6b15f schema:name readcube_id
    62 schema:value 0bc05b21468099205adf46f543f4f2203dbaa000714bf42d1219094e7d38c881
    63 rdf:type schema:PropertyValue
    64 N5f9a2af5fb464e87bce330ccff35ccd6 rdf:first sg:person.01341544734.78
    65 rdf:rest Nf3c39d1c96774cfaa321c10a041765c4
    66 N618ec8cde00f4d75b7dff2f47b0da859 rdf:first sg:person.01245334451.10
    67 rdf:rest rdf:nil
    68 N69e4602d13c3470da63686b2e91c2a0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    69 schema:name Adenosine Diphosphate
    70 rdf:type schema:DefinedTerm
    71 N83472d24e1f04fd886b953c764b679cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    72 schema:name Liposomes
    73 rdf:type schema:DefinedTerm
    74 Nae57d1dbab0f4d2f809a8250757517c6 schema:name pubmed_id
    75 schema:value 7528810
    76 rdf:type schema:PropertyValue
    77 Nb323c437d6124d6b8aa7dc5bb1da03c3 schema:volumeNumber 39
    78 rdf:type schema:PublicationVolume
    79 Nbc6a1db078ca4060952d05cbbef1dd37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    80 schema:name DNA-Directed RNA Polymerases
    81 rdf:type schema:DefinedTerm
    82 Nc9e020a55da34a5ba4b4c6c2499c2d1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    83 schema:name Electrophoresis, Polyacrylamide Gel
    84 rdf:type schema:DefinedTerm
    85 Ncab17c596d0a4e6c9b167c0063d7b785 schema:name Springer Nature - SN SciGraph project
    86 rdf:type schema:Organization
    87 Ncab1a658c84b498b9e2c10ea9c9bd4d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Dimyristoylphosphatidylcholine
    89 rdf:type schema:DefinedTerm
    90 Ncf94406b1b3f4843bdf848c48459694a schema:issueNumber 6
    91 rdf:type schema:PublicationIssue
    92 Nd2ffe907646f4464886d96cd7b4e8749 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    93 schema:name RNA
    94 rdf:type schema:DefinedTerm
    95 Neb317df2f3f141d2a34e489ec1cf0060 schema:name doi
    96 schema:value 10.1007/bf00160400
    97 rdf:type schema:PropertyValue
    98 Nf3c39d1c96774cfaa321c10a041765c4 rdf:first sg:person.01162145017.31
    99 rdf:rest N618ec8cde00f4d75b7dff2f47b0da859
    100 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Biological Sciences
    102 rdf:type schema:DefinedTerm
    103 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Biochemistry and Cell Biology
    105 rdf:type schema:DefinedTerm
    106 sg:journal.1016442 schema:issn 0022-2844
    107 1432-1432
    108 schema:name Journal of Molecular Evolution
    109 rdf:type schema:Periodical
    110 sg:person.01046310514.43 schema:affiliation https://www.grid.ac/institutes/grid.205975.c
    111 schema:familyName Chakrabarti
    112 schema:givenName Ajoy C.
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046310514.43
    114 rdf:type schema:Person
    115 sg:person.01162145017.31 schema:affiliation https://www.grid.ac/institutes/grid.214007.0
    116 schema:familyName Joyce
    117 schema:givenName Gerald F.
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162145017.31
    119 rdf:type schema:Person
    120 sg:person.01245334451.10 schema:affiliation https://www.grid.ac/institutes/grid.205975.c
    121 schema:familyName Deamer
    122 schema:givenName David W.
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245334451.10
    124 rdf:type schema:Person
    125 sg:person.01341544734.78 schema:affiliation https://www.grid.ac/institutes/grid.214007.0
    126 schema:familyName Breaker
    127 schema:givenName Ronald R.
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341544734.78
    129 rdf:type schema:Person
    130 sg:pub.10.1007/bf01733047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023332651
    131 https://doi.org/10.1007/bf01733047
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/bf01804674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039053381
    134 https://doi.org/10.1007/bf01804674
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/bf01808273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003430610
    137 https://doi.org/10.1007/bf01808273
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1038/338217a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044933284
    140 https://doi.org/10.1038/338217a0
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1038/357057a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026419509
    143 https://doi.org/10.1038/357057a0
    144 rdf:type schema:CreativeWork
    145 https://app.dimensions.ai/details/publication/pub.1074667589 schema:CreativeWork
    146 https://app.dimensions.ai/details/publication/pub.1075220883 schema:CreativeWork
    147 https://doi.org/10.1016/0005-2736(73)90314-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038310374
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/0005-2736(78)90176-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014199268
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/0005-2736(85)90521-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027777621
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/0005-2736(92)90308-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030920419
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/0009-3084(86)90069-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019773812
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/s0006-3495(90)82452-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000435580
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1021/bi00611a014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055182624
    160 rdf:type schema:CreativeWork
    161 https://www.grid.ac/institutes/grid.205975.c schema:alternateName University of California, Santa Cruz
    162 schema:name Department of Chemistry and Biochemistry, University of California, 95064, Santa Cruz, Santa Cruz, CA, USA
    163 rdf:type schema:Organization
    164 https://www.grid.ac/institutes/grid.214007.0 schema:alternateName Scripps Research Institute
    165 schema:name Departments of Chemistry and Molecular Biology, The Scripps Research Institute, 10666 N. Torrey Pines Road, 92037, CALa Jolla, USA
    166 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...