Production of RNA by a polymerase protein encapsulated within phospholipid vesicles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-12

AUTHORS

Ajoy C. Chakrabarti, Ronald R. Breaker, Gerald F. Joyce, David W. Deamer

ABSTRACT

Catalyzed polymerization reactions represent a primary anabolic activity of all cells. It can be assumed that early cells carried out such reactions, in which macromolecular catalysts were encapsulated within some type of boundary membrane. In the experiments described here, we show that a template-independent RNA polymerase (polynucleotide phosphorylase) can be encapsulated in dimyristoyl phosphatidylcholine vesicles without substrate. When the substrate adenosine diphosphate (ADP) was provided externally, long-chain RNA polymers were synthesized within the vesicles. Substrate flux was maximized by maintaining the vesicles at the phase transition temperature of the component lipid. A protease was introduced externally as an additional control. Free enzyme was inactivated under identical conditions. RNA products were visualized in situ by ethidium bromide fluorescence. The products were harvested from the liposomes, radiolabeled, and analyzed by polyacrylamide gel electrophoresis. Encapsulated catalysts represent a model for primitive cellular systems in which an RNA polymerase was entrapped within a protected microenvironment. More... »

PAGES

555-559

References to SciGraph publications

  • 1982-05. Encapsulation of macromolecules by lipid vesicles under simulated prebiotic conditions in JOURNAL OF MOLECULAR EVOLUTION
  • 1992-05. Autocatalytic self-replicating micelles as models for prebiotic structures in NATURE
  • 1989-03. RNA evolution and the origins of life in NATURE
  • 1988-09. The chemical logic of a minimum protocell in ORIGINS OF LIFE AND EVOLUTION OF BIOSPHERES
  • 1990-03. Origins of life: An operational definition in ORIGINS OF LIFE AND EVOLUTION OF BIOSPHERES
  • Journal

    TITLE

    Journal of Molecular Evolution

    ISSUE

    6

    VOLUME

    39

    Related Patents

  • In Vitro Evolution In Microfluidic Systems
  • In Vitro Evolution In Microfluidic Systems
  • A Method For Increasing The Concentration Of A Nucleic Acid Molecule
  • Fluorocarbon Emulsion Stabilizing Surfactants
  • Manipulation Of Fluids And Reactions In Microfluidic Systems
  • Method Of Encapsulating A Molecule And A Microbead
  • In Vitro Evolution In Microfluidic Systems
  • In Vitro Sorting Method
  • Selection By Compartmentalised Screening
  • Compartmentalised Screening By Microfluidic Control
  • Digital Analyte Analysis
  • Manipulation Of Fluids, Fluid Components And Reactions In Microfluidic Systems
  • Emulsion Compositions
  • Systems For Handling Microfludic Droplets
  • Selection By Compartmentalised Screening
  • Bead Emulsion Nucleic Acid Amplification
  • In Vitro Evolution In Microfluidic Systems
  • Fluorocarbon Emulsion Stabilizing Surfactants
  • Selection By Compartmentalised Screening
  • Digital Analyte Analysis
  • Manipulation Of Fluids And Reactions In Microfluidic Systems
  • Manipulation Of Fluids And Reactions In Microfluidic Systems
  • Bead Emulsion Nucleic Acid Amplification
  • Digital Analyte Analysis
  • Compartmentalised Screening By Microfluidic Control
  • In Vitro Sorting Method
  • Sandwich Assays In Droplets
  • Digital Analyte Analysis
  • Selection Of Compartmentalized Screening Method
  • Microfluidic Devices And Methods Of Use In The Formation And Control Of Nanoreactors
  • Sample Multiplexing
  • In Vitro Evolution In Microfluidic Systems
  • Manipulating Droplet Size
  • Compartmentalised Combinatorial Chemistry By Microfluidic Control
  • Optical Sorting Method
  • Compartmentalised Combinatorial Chemistry By Microfluidic Control
  • Manipulation Of Fluids, Fluid Components And Reactions In Microfluidic Systems
  • Compartmentalized Screening By Microfluidic Control
  • Vitro Evolution In Microfluidic Systems
  • Microfluidic Devices And Methods Of Use In The Formation And Control Of Nanoreactors
  • In Vitro Evolution In Microfluidic Systems
  • Manipulation Of Microfluidic Droplets
  • In Vitro Sorting Method
  • Method Of Synthesis And Testing Of Combinatorial Libraries Using Microcapsules
  • Microfluidic Devices And Methods Of Use In The Formation And Control Of Nanoreactors
  • Compositions And Methods For Molecular Labeling
  • Digital Analyte Analysis
  • In Vitro Sorting Method
  • Methods For Forming Mixed Droplets
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00160400

    DOI

    http://dx.doi.org/10.1007/bf00160400

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002468314

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/7528810


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adenosine Diphosphate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA-Directed RNA Polymerases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Dimyristoylphosphatidylcholine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electrophoresis, Polyacrylamide Gel", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluorescence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Liposomes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of California, Santa Cruz", 
              "id": "https://www.grid.ac/institutes/grid.205975.c", 
              "name": [
                "Department of Chemistry and Biochemistry, University of California, 95064, Santa Cruz, Santa Cruz, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chakrabarti", 
            "givenName": "Ajoy C.", 
            "id": "sg:person.01046310514.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046310514.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Scripps Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.214007.0", 
              "name": [
                "Departments of Chemistry and Molecular Biology, The Scripps Research Institute, 10666 N. Torrey Pines Road, 92037, CALa Jolla, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Breaker", 
            "givenName": "Ronald R.", 
            "id": "sg:person.01341544734.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341544734.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Scripps Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.214007.0", 
              "name": [
                "Departments of Chemistry and Molecular Biology, The Scripps Research Institute, 10666 N. Torrey Pines Road, 92037, CALa Jolla, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Joyce", 
            "givenName": "Gerald F.", 
            "id": "sg:person.01162145017.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162145017.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, Santa Cruz", 
              "id": "https://www.grid.ac/institutes/grid.205975.c", 
              "name": [
                "Department of Chemistry and Biochemistry, University of California, 95064, Santa Cruz, Santa Cruz, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Deamer", 
            "givenName": "David W.", 
            "id": "sg:person.01245334451.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245334451.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0006-3495(90)82452-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000435580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01808273", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003430610", 
              "https://doi.org/10.1007/bf01808273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01808273", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003430610", 
              "https://doi.org/10.1007/bf01808273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0005-2736(78)90176-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014199268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0005-2736(78)90176-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014199268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0009-3084(86)90069-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019773812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0009-3084(86)90069-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019773812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01733047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023332651", 
              "https://doi.org/10.1007/bf01733047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01733047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023332651", 
              "https://doi.org/10.1007/bf01733047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/357057a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026419509", 
              "https://doi.org/10.1038/357057a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0005-2736(85)90521-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027777621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0005-2736(85)90521-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027777621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0005-2736(92)90308-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030920419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0005-2736(92)90308-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030920419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0005-2736(73)90314-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038310374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0005-2736(73)90314-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038310374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01804674", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039053381", 
              "https://doi.org/10.1007/bf01804674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01804674", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039053381", 
              "https://doi.org/10.1007/bf01804674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/338217a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044933284", 
              "https://doi.org/10.1038/338217a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/338217a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044933284", 
              "https://doi.org/10.1038/338217a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bi00611a014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055182624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074667589", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1075220883", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1994-12", 
        "datePublishedReg": "1994-12-01", 
        "description": "Catalyzed polymerization reactions represent a primary anabolic activity of all cells. It can be assumed that early cells carried out such reactions, in which macromolecular catalysts were encapsulated within some type of boundary membrane. In the experiments described here, we show that a template-independent RNA polymerase (polynucleotide phosphorylase) can be encapsulated in dimyristoyl phosphatidylcholine vesicles without substrate. When the substrate adenosine diphosphate (ADP) was provided externally, long-chain RNA polymers were synthesized within the vesicles. Substrate flux was maximized by maintaining the vesicles at the phase transition temperature of the component lipid. A protease was introduced externally as an additional control. Free enzyme was inactivated under identical conditions. RNA products were visualized in situ by ethidium bromide fluorescence. The products were harvested from the liposomes, radiolabeled, and analyzed by polyacrylamide gel electrophoresis. Encapsulated catalysts represent a model for primitive cellular systems in which an RNA polymerase was entrapped within a protected microenvironment.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf00160400", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1016442", 
            "issn": [
              "0022-2844", 
              "1432-1432"
            ], 
            "name": "Journal of Molecular Evolution", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "39"
          }
        ], 
        "name": "Production of RNA by a polymerase protein encapsulated within phospholipid vesicles", 
        "pagination": "555-559", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00160400"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0bc05b21468099205adf46f543f4f2203dbaa000714bf42d1219094e7d38c881"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002468314"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0360051"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "7528810"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00160400", 
          "https://app.dimensions.ai/details/publication/pub.1002468314"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T08:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119754_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF00160400"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00160400'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00160400'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00160400'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00160400'


     

    This table displays all metadata directly associated to this object as RDF triples.

    166 TRIPLES      21 PREDICATES      50 URIs      28 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00160400 schema:about N0a415a597ad943bd9b26c62971608316
    2 N25b3e64f7e354a6687d1930f8fd10ad6
    3 N3201d39503114a929316be4f0b088a79
    4 N65108e7435e74d4f91bcd0a87834a0d7
    5 N6df3ceacca5841f381ac5464159c6b31
    6 N8e69b709c3b340e0b703697ff7e61882
    7 Nf0cdeec414544a94b6c8c572e5b3037e
    8 anzsrc-for:06
    9 anzsrc-for:0601
    10 schema:author Nfd99c2043634497c979d75ea2433640c
    11 schema:citation sg:pub.10.1007/bf01733047
    12 sg:pub.10.1007/bf01804674
    13 sg:pub.10.1007/bf01808273
    14 sg:pub.10.1038/338217a0
    15 sg:pub.10.1038/357057a0
    16 https://app.dimensions.ai/details/publication/pub.1074667589
    17 https://app.dimensions.ai/details/publication/pub.1075220883
    18 https://doi.org/10.1016/0005-2736(73)90314-3
    19 https://doi.org/10.1016/0005-2736(78)90176-1
    20 https://doi.org/10.1016/0005-2736(85)90521-8
    21 https://doi.org/10.1016/0005-2736(92)90308-9
    22 https://doi.org/10.1016/0009-3084(86)90069-1
    23 https://doi.org/10.1016/s0006-3495(90)82452-8
    24 https://doi.org/10.1021/bi00611a014
    25 schema:datePublished 1994-12
    26 schema:datePublishedReg 1994-12-01
    27 schema:description Catalyzed polymerization reactions represent a primary anabolic activity of all cells. It can be assumed that early cells carried out such reactions, in which macromolecular catalysts were encapsulated within some type of boundary membrane. In the experiments described here, we show that a template-independent RNA polymerase (polynucleotide phosphorylase) can be encapsulated in dimyristoyl phosphatidylcholine vesicles without substrate. When the substrate adenosine diphosphate (ADP) was provided externally, long-chain RNA polymers were synthesized within the vesicles. Substrate flux was maximized by maintaining the vesicles at the phase transition temperature of the component lipid. A protease was introduced externally as an additional control. Free enzyme was inactivated under identical conditions. RNA products were visualized in situ by ethidium bromide fluorescence. The products were harvested from the liposomes, radiolabeled, and analyzed by polyacrylamide gel electrophoresis. Encapsulated catalysts represent a model for primitive cellular systems in which an RNA polymerase was entrapped within a protected microenvironment.
    28 schema:genre research_article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree false
    31 schema:isPartOf N567a581e0f4b49af99190ccb5be4ff94
    32 N6abde932bb0b43158ca0871c66aa612a
    33 sg:journal.1016442
    34 schema:name Production of RNA by a polymerase protein encapsulated within phospholipid vesicles
    35 schema:pagination 555-559
    36 schema:productId N148333050f4044d98877404886c85f6a
    37 N875235f2918847168b8457ff3ac9e633
    38 Nb0529705280e4dc79c135cda299de2a4
    39 Ne56984c4b3784443a6a16d448fb9625f
    40 Ned06cc8cec9f4a129640cbd6bd8214d7
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002468314
    42 https://doi.org/10.1007/bf00160400
    43 schema:sdDatePublished 2019-04-15T08:54
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher N0c0b3969e49340c5b6c0544d11e8ed76
    46 schema:url http://link.springer.com/10.1007/BF00160400
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N0a415a597ad943bd9b26c62971608316 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    51 schema:name Dimyristoylphosphatidylcholine
    52 rdf:type schema:DefinedTerm
    53 N0c0b3969e49340c5b6c0544d11e8ed76 schema:name Springer Nature - SN SciGraph project
    54 rdf:type schema:Organization
    55 N148333050f4044d98877404886c85f6a schema:name readcube_id
    56 schema:value 0bc05b21468099205adf46f543f4f2203dbaa000714bf42d1219094e7d38c881
    57 rdf:type schema:PropertyValue
    58 N25b3e64f7e354a6687d1930f8fd10ad6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    59 schema:name Liposomes
    60 rdf:type schema:DefinedTerm
    61 N3201d39503114a929316be4f0b088a79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    62 schema:name Electrophoresis, Polyacrylamide Gel
    63 rdf:type schema:DefinedTerm
    64 N35f6f3e605b849dc855b68b5fcdbd59c rdf:first sg:person.01245334451.10
    65 rdf:rest rdf:nil
    66 N567a581e0f4b49af99190ccb5be4ff94 schema:volumeNumber 39
    67 rdf:type schema:PublicationVolume
    68 N638e61b1473844a2926fef8d15c7c208 rdf:first sg:person.01162145017.31
    69 rdf:rest N35f6f3e605b849dc855b68b5fcdbd59c
    70 N65108e7435e74d4f91bcd0a87834a0d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    71 schema:name Adenosine Diphosphate
    72 rdf:type schema:DefinedTerm
    73 N6a70faafe8d14e3f8ec8a2b425d68a47 rdf:first sg:person.01341544734.78
    74 rdf:rest N638e61b1473844a2926fef8d15c7c208
    75 N6abde932bb0b43158ca0871c66aa612a schema:issueNumber 6
    76 rdf:type schema:PublicationIssue
    77 N6df3ceacca5841f381ac5464159c6b31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    78 schema:name DNA-Directed RNA Polymerases
    79 rdf:type schema:DefinedTerm
    80 N875235f2918847168b8457ff3ac9e633 schema:name doi
    81 schema:value 10.1007/bf00160400
    82 rdf:type schema:PropertyValue
    83 N8e69b709c3b340e0b703697ff7e61882 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    84 schema:name Fluorescence
    85 rdf:type schema:DefinedTerm
    86 Nb0529705280e4dc79c135cda299de2a4 schema:name dimensions_id
    87 schema:value pub.1002468314
    88 rdf:type schema:PropertyValue
    89 Ne56984c4b3784443a6a16d448fb9625f schema:name nlm_unique_id
    90 schema:value 0360051
    91 rdf:type schema:PropertyValue
    92 Ned06cc8cec9f4a129640cbd6bd8214d7 schema:name pubmed_id
    93 schema:value 7528810
    94 rdf:type schema:PropertyValue
    95 Nf0cdeec414544a94b6c8c572e5b3037e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name RNA
    97 rdf:type schema:DefinedTerm
    98 Nfd99c2043634497c979d75ea2433640c rdf:first sg:person.01046310514.43
    99 rdf:rest N6a70faafe8d14e3f8ec8a2b425d68a47
    100 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Biological Sciences
    102 rdf:type schema:DefinedTerm
    103 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Biochemistry and Cell Biology
    105 rdf:type schema:DefinedTerm
    106 sg:journal.1016442 schema:issn 0022-2844
    107 1432-1432
    108 schema:name Journal of Molecular Evolution
    109 rdf:type schema:Periodical
    110 sg:person.01046310514.43 schema:affiliation https://www.grid.ac/institutes/grid.205975.c
    111 schema:familyName Chakrabarti
    112 schema:givenName Ajoy C.
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046310514.43
    114 rdf:type schema:Person
    115 sg:person.01162145017.31 schema:affiliation https://www.grid.ac/institutes/grid.214007.0
    116 schema:familyName Joyce
    117 schema:givenName Gerald F.
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162145017.31
    119 rdf:type schema:Person
    120 sg:person.01245334451.10 schema:affiliation https://www.grid.ac/institutes/grid.205975.c
    121 schema:familyName Deamer
    122 schema:givenName David W.
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245334451.10
    124 rdf:type schema:Person
    125 sg:person.01341544734.78 schema:affiliation https://www.grid.ac/institutes/grid.214007.0
    126 schema:familyName Breaker
    127 schema:givenName Ronald R.
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341544734.78
    129 rdf:type schema:Person
    130 sg:pub.10.1007/bf01733047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023332651
    131 https://doi.org/10.1007/bf01733047
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/bf01804674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039053381
    134 https://doi.org/10.1007/bf01804674
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/bf01808273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003430610
    137 https://doi.org/10.1007/bf01808273
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1038/338217a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044933284
    140 https://doi.org/10.1038/338217a0
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1038/357057a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026419509
    143 https://doi.org/10.1038/357057a0
    144 rdf:type schema:CreativeWork
    145 https://app.dimensions.ai/details/publication/pub.1074667589 schema:CreativeWork
    146 https://app.dimensions.ai/details/publication/pub.1075220883 schema:CreativeWork
    147 https://doi.org/10.1016/0005-2736(73)90314-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038310374
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/0005-2736(78)90176-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014199268
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/0005-2736(85)90521-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027777621
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/0005-2736(92)90308-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030920419
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/0009-3084(86)90069-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019773812
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/s0006-3495(90)82452-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000435580
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1021/bi00611a014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055182624
    160 rdf:type schema:CreativeWork
    161 https://www.grid.ac/institutes/grid.205975.c schema:alternateName University of California, Santa Cruz
    162 schema:name Department of Chemistry and Biochemistry, University of California, 95064, Santa Cruz, Santa Cruz, CA, USA
    163 rdf:type schema:Organization
    164 https://www.grid.ac/institutes/grid.214007.0 schema:alternateName Scripps Research Institute
    165 schema:name Departments of Chemistry and Molecular Biology, The Scripps Research Institute, 10666 N. Torrey Pines Road, 92037, CALa Jolla, USA
    166 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...