On extendable planes, M.D.S. codes and hyperovals in PG(2, q), q=2t View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-10

AUTHORS

Aiden A. Bruen, Robert Silverman

ABSTRACT

The question of the existence of finite planes seems to be beyond the range of present techniques. In this paper we skirmish with an easier question: extendable planes. We show how extendable planes arise as special cases of certain maximum distance separable codes (M.D.S. codes). A synthetic characterization of extendable planes is obtained. A different characterization is obtained in terms of hyperoval systems. Moreover, since π=PG(2, q), q=2t, is extendable this leads to new insights concerning the subtle and marvellous structure of certain hyperoval systems in π. A priori, it seems somewhat surprising that very much can be said about hyperovals in π, as they have certainly not been classified. In particular, we obtain a partial generalization of the famous ‘even intersection’ property of hyperovals in PG(2, 4). We conclude with a discussion of hyperoval ‘spreads’ and ‘packings’ in π along with some open questions. More... »

PAGES

31-43

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00147798

DOI

http://dx.doi.org/10.1007/bf00147798

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025324460


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Western University", 
          "id": "https://www.grid.ac/institutes/grid.39381.30", 
          "name": [
            "Department of Mathematics, The University of Western Ontario, N6A 5B7, London, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bruen", 
        "givenName": "Aiden A.", 
        "id": "sg:person.010620072145.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010620072145.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wright State University", 
          "id": "https://www.grid.ac/institutes/grid.268333.f", 
          "name": [
            "Department of Mathematics, Wright State University, 45435, Dayton, Ohio, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Silverman", 
        "givenName": "Robert", 
        "id": "sg:person.014016277355.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014016277355.65"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01214819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009618036", 
          "https://doi.org/10.1007/bf01214819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01214819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009618036", 
          "https://doi.org/10.1007/bf01214819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0195-6698(83)80011-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033477747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0097-3165(71)90036-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051482417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177729387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064401666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cjm-1960-014-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072264295"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988-10", 
    "datePublishedReg": "1988-10-01", 
    "description": "The question of the existence of finite planes seems to be beyond the range of present techniques. In this paper we skirmish with an easier question: extendable planes. We show how extendable planes arise as special cases of certain maximum distance separable codes (M.D.S. codes). A synthetic characterization of extendable planes is obtained. A different characterization is obtained in terms of hyperoval systems. Moreover, since \u03c0=PG(2, q), q=2t, is extendable this leads to new insights concerning the subtle and marvellous structure of certain hyperoval systems in \u03c0. A priori, it seems somewhat surprising that very much can be said about hyperovals in \u03c0, as they have certainly not been classified. In particular, we obtain a partial generalization of the famous \u2018even intersection\u2019 property of hyperovals in PG(2, 4). We conclude with a discussion of hyperoval \u2018spreads\u2019 and \u2018packings\u2019 in \u03c0 along with some open questions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00147798", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135919", 
        "issn": [
          "0046-5755", 
          "1572-9168"
        ], 
        "name": "Geometriae Dedicata", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "On extendable planes, M.D.S. codes and hyperovals in PG(2, q), q=2t", 
    "pagination": "31-43", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "78a5623d29ec2a7b085372d0b1b46ff6c15a916a4807872a9ddb73cdc43c0b86"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00147798"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025324460"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00147798", 
      "https://app.dimensions.ai/details/publication/pub.1025324460"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130831_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00147798"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00147798'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00147798'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00147798'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00147798'


 

This table displays all metadata directly associated to this object as RDF triples.

87 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00147798 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N9b2bf18cc17e4cf4a232c79657d1da1e
4 schema:citation sg:pub.10.1007/bf01214819
5 https://doi.org/10.1016/0097-3165(71)90036-7
6 https://doi.org/10.1016/s0195-6698(83)80011-0
7 https://doi.org/10.1214/aoms/1177729387
8 https://doi.org/10.4153/cjm-1960-014-0
9 schema:datePublished 1988-10
10 schema:datePublishedReg 1988-10-01
11 schema:description The question of the existence of finite planes seems to be beyond the range of present techniques. In this paper we skirmish with an easier question: extendable planes. We show how extendable planes arise as special cases of certain maximum distance separable codes (M.D.S. codes). A synthetic characterization of extendable planes is obtained. A different characterization is obtained in terms of hyperoval systems. Moreover, since π=PG(2, q), q=2t, is extendable this leads to new insights concerning the subtle and marvellous structure of certain hyperoval systems in π. A priori, it seems somewhat surprising that very much can be said about hyperovals in π, as they have certainly not been classified. In particular, we obtain a partial generalization of the famous ‘even intersection’ property of hyperovals in PG(2, 4). We conclude with a discussion of hyperoval ‘spreads’ and ‘packings’ in π along with some open questions.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N401072e5b1f54a97b6815416124da2b7
16 N91db40898c324ab498c82dde4f632f5b
17 sg:journal.1135919
18 schema:name On extendable planes, M.D.S. codes and hyperovals in PG(2, q), q=2t
19 schema:pagination 31-43
20 schema:productId N33e0cff34e6d4690ac89185b2cf18473
21 N5ed6c13e07af462dbb3beb4aa913f3e3
22 N8043bfbd1a0c4393bba1a69986699490
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025324460
24 https://doi.org/10.1007/bf00147798
25 schema:sdDatePublished 2019-04-11T14:02
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Na425f03b96b34a76b27a9ba3dbefaef1
28 schema:url http://link.springer.com/10.1007/BF00147798
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N1974fecd8bb749b780ac4ea1057b2eb9 rdf:first sg:person.014016277355.65
33 rdf:rest rdf:nil
34 N33e0cff34e6d4690ac89185b2cf18473 schema:name dimensions_id
35 schema:value pub.1025324460
36 rdf:type schema:PropertyValue
37 N401072e5b1f54a97b6815416124da2b7 schema:issueNumber 1
38 rdf:type schema:PublicationIssue
39 N5ed6c13e07af462dbb3beb4aa913f3e3 schema:name readcube_id
40 schema:value 78a5623d29ec2a7b085372d0b1b46ff6c15a916a4807872a9ddb73cdc43c0b86
41 rdf:type schema:PropertyValue
42 N8043bfbd1a0c4393bba1a69986699490 schema:name doi
43 schema:value 10.1007/bf00147798
44 rdf:type schema:PropertyValue
45 N91db40898c324ab498c82dde4f632f5b schema:volumeNumber 28
46 rdf:type schema:PublicationVolume
47 N9b2bf18cc17e4cf4a232c79657d1da1e rdf:first sg:person.010620072145.82
48 rdf:rest N1974fecd8bb749b780ac4ea1057b2eb9
49 Na425f03b96b34a76b27a9ba3dbefaef1 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
52 schema:name Mathematical Sciences
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
55 schema:name Applied Mathematics
56 rdf:type schema:DefinedTerm
57 sg:journal.1135919 schema:issn 0046-5755
58 1572-9168
59 schema:name Geometriae Dedicata
60 rdf:type schema:Periodical
61 sg:person.010620072145.82 schema:affiliation https://www.grid.ac/institutes/grid.39381.30
62 schema:familyName Bruen
63 schema:givenName Aiden A.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010620072145.82
65 rdf:type schema:Person
66 sg:person.014016277355.65 schema:affiliation https://www.grid.ac/institutes/grid.268333.f
67 schema:familyName Silverman
68 schema:givenName Robert
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014016277355.65
70 rdf:type schema:Person
71 sg:pub.10.1007/bf01214819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009618036
72 https://doi.org/10.1007/bf01214819
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1016/0097-3165(71)90036-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051482417
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1016/s0195-6698(83)80011-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033477747
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1214/aoms/1177729387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064401666
79 rdf:type schema:CreativeWork
80 https://doi.org/10.4153/cjm-1960-014-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072264295
81 rdf:type schema:CreativeWork
82 https://www.grid.ac/institutes/grid.268333.f schema:alternateName Wright State University
83 schema:name Department of Mathematics, Wright State University, 45435, Dayton, Ohio, USA
84 rdf:type schema:Organization
85 https://www.grid.ac/institutes/grid.39381.30 schema:alternateName Western University
86 schema:name Department of Mathematics, The University of Western Ontario, N6A 5B7, London, Canada
87 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...