The classification of the translation planes of order 16, I View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1983-12

AUTHORS

U. Dempwolff, A. Reifart

ABSTRACT

The translation planes of order 16 are completely classified. The exceptional isomorphism A8≃GL(4, 2) gives a crucial computational approach to this problem

PAGES

137-153

References to SciGraph publications

  • 1978-02. A note on the derived semifield planes of order 16 in AEQUATIONES MATHEMATICAE
  • 1977-03. Tangentially transitive planes of order 16 in JOURNAL OF GEOMETRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00147760

    DOI

    http://dx.doi.org/10.1007/bf00147760

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1041495014


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Mathematisches Institut, Universit\u00e4t Kaiserslautern, Erwin-Schr\u00f6dinger-Stra\u00dfe, 6750, Kaiserslautern, F.R. Germany", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Mathematisches Institut, Universit\u00e4t Kaiserslautern, Erwin-Schr\u00f6dinger-Stra\u00dfe, 6750, Kaiserslautern, F.R. Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dempwolff", 
            "givenName": "U.", 
            "id": "sg:person.07702072667.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07702072667.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mathematisches Institut, Universit\u00e4t Kaiserslautern, Erwin-Schr\u00f6dinger-Stra\u00dfe, 6750, Kaiserslautern, F.R. Germany", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Mathematisches Institut, Universit\u00e4t Kaiserslautern, Erwin-Schr\u00f6dinger-Stra\u00dfe, 6750, Kaiserslautern, F.R. Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Reifart", 
            "givenName": "A.", 
            "id": "sg:person.011275033667.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011275033667.20"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01844070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002561426", 
              "https://doi.org/10.1007/bf01844070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01933068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010877427", 
              "https://doi.org/10.1007/bf01933068"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1983-12", 
        "datePublishedReg": "1983-12-01", 
        "description": "The translation planes of order 16 are completely classified. The exceptional isomorphism A8\u2243GL(4, 2) gives a crucial computational approach to this problem", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf00147760", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135919", 
            "issn": [
              "0046-5755", 
              "1572-9168"
            ], 
            "name": "Geometriae Dedicata", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "15"
          }
        ], 
        "keywords": [
          "computational approach", 
          "classification", 
          "order 16", 
          "plane", 
          "isomorphism", 
          "problem", 
          "approach", 
          "translation planes", 
          "exceptional isomorphism", 
          "crucial computational approach"
        ], 
        "name": "The classification of the translation planes of order 16, I", 
        "pagination": "137-153", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1041495014"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00147760"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00147760", 
          "https://app.dimensions.ai/details/publication/pub.1041495014"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T17:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_156.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf00147760"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00147760'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00147760'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00147760'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00147760'


     

    This table displays all metadata directly associated to this object as RDF triples.

    83 TRIPLES      22 PREDICATES      38 URIs      28 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00147760 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N2a600032a268439ebe0b7eff119bfdf3
    4 schema:citation sg:pub.10.1007/bf01844070
    5 sg:pub.10.1007/bf01933068
    6 schema:datePublished 1983-12
    7 schema:datePublishedReg 1983-12-01
    8 schema:description The translation planes of order 16 are completely classified. The exceptional isomorphism A8≃GL(4, 2) gives a crucial computational approach to this problem
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N09352bd278ee4df18908fd49f3fece52
    13 N1261a43f5ec84248a2741a79d6c1c467
    14 sg:journal.1135919
    15 schema:keywords approach
    16 classification
    17 computational approach
    18 crucial computational approach
    19 exceptional isomorphism
    20 isomorphism
    21 order 16
    22 plane
    23 problem
    24 translation planes
    25 schema:name The classification of the translation planes of order 16, I
    26 schema:pagination 137-153
    27 schema:productId N96bc2abe41434ed2ba5418822ef477ee
    28 Nb798fb7685df4bc3b7f1fb1f970c1f1d
    29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041495014
    30 https://doi.org/10.1007/bf00147760
    31 schema:sdDatePublished 2021-11-01T17:55
    32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    33 schema:sdPublisher N7463790aa70a48eba10d50bded48118b
    34 schema:url https://doi.org/10.1007/bf00147760
    35 sgo:license sg:explorer/license/
    36 sgo:sdDataset articles
    37 rdf:type schema:ScholarlyArticle
    38 N09352bd278ee4df18908fd49f3fece52 schema:volumeNumber 15
    39 rdf:type schema:PublicationVolume
    40 N1261a43f5ec84248a2741a79d6c1c467 schema:issueNumber 2
    41 rdf:type schema:PublicationIssue
    42 N14aaf02f239a453ba551257d90e6af11 rdf:first sg:person.011275033667.20
    43 rdf:rest rdf:nil
    44 N2a600032a268439ebe0b7eff119bfdf3 rdf:first sg:person.07702072667.13
    45 rdf:rest N14aaf02f239a453ba551257d90e6af11
    46 N7463790aa70a48eba10d50bded48118b schema:name Springer Nature - SN SciGraph project
    47 rdf:type schema:Organization
    48 N96bc2abe41434ed2ba5418822ef477ee schema:name dimensions_id
    49 schema:value pub.1041495014
    50 rdf:type schema:PropertyValue
    51 Nb798fb7685df4bc3b7f1fb1f970c1f1d schema:name doi
    52 schema:value 10.1007/bf00147760
    53 rdf:type schema:PropertyValue
    54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    55 schema:name Mathematical Sciences
    56 rdf:type schema:DefinedTerm
    57 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Pure Mathematics
    59 rdf:type schema:DefinedTerm
    60 sg:journal.1135919 schema:issn 0046-5755
    61 1572-9168
    62 schema:name Geometriae Dedicata
    63 schema:publisher Springer Nature
    64 rdf:type schema:Periodical
    65 sg:person.011275033667.20 schema:affiliation grid-institutes:None
    66 schema:familyName Reifart
    67 schema:givenName A.
    68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011275033667.20
    69 rdf:type schema:Person
    70 sg:person.07702072667.13 schema:affiliation grid-institutes:None
    71 schema:familyName Dempwolff
    72 schema:givenName U.
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07702072667.13
    74 rdf:type schema:Person
    75 sg:pub.10.1007/bf01844070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002561426
    76 https://doi.org/10.1007/bf01844070
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1007/bf01933068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010877427
    79 https://doi.org/10.1007/bf01933068
    80 rdf:type schema:CreativeWork
    81 grid-institutes:None schema:alternateName Mathematisches Institut, Universität Kaiserslautern, Erwin-Schrödinger-Straße, 6750, Kaiserslautern, F.R. Germany
    82 schema:name Mathematisches Institut, Universität Kaiserslautern, Erwin-Schrödinger-Straße, 6750, Kaiserslautern, F.R. Germany
    83 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...