A simulation study for the global carbon cycle, including man's impact on the biosphere View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1984-06

AUTHORS

J. Goudriaan, P. Ketner

ABSTRACT

The simulation model accounts for four major compartments in the global carbon cycle: atmosphere, ocean, terrestrial biosphere and fossil carbon reservoir. The ocean is further compartmentalized into a high and a low latitude surface layer, and into 10 deep sea strata. The oceanic carbon fluxes are caused by massflow of descending and upwelling water, by precipitation of organic material and by diffusion exchange.The biosphere is horizontally subdivided into six ecosystems and vertically into leaves, branches, stemwood, roots, litter, young humus and stable soil carbon. Deforestation, slash and burn agriculture, rangeland burning and shifts in land use have been included. The atmosphere is treated as one well mixed reservoir. Fossil fuel consumption is simulated with historic data, and with IIASA scenario's for the future. Using the low IIASA scenario an atmospheric CO2 concentration of 431 ppmv is simulated for 2030 AD. A sensitivity analysis shows the importance of different parameters and of human behaviour. Notwithstanding the large size of the biosphere fluxes, the atmospheric CO2 concentration in the next century will be predominantly determined by the growth rate of fossil fuel consumption. More... »

PAGES

167-192

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00144611

DOI

http://dx.doi.org/10.1007/bf00144611

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050918192


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Theoretical Production Ecology, Agricultural University, Bornsesteeg 65, 6708 PD, Wageningen, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Department of Theoretical Production Ecology, Agricultural University, Bornsesteeg 65, 6708 PD, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goudriaan", 
        "givenName": "J.", 
        "id": "sg:person.012751452074.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012751452074.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Vegetation Science, Plant Ecology and Weed Science, Agricultural University, Bornse-steeg 69, 6708 PD, Wageningen, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Department of Vegetation Science, Plant Ecology and Weed Science, Agricultural University, Bornse-steeg 69, 6708 PD, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ketner", 
        "givenName": "P.", 
        "id": "sg:person.014063230367.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014063230367.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-96545-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109711441", 
          "https://doi.org/10.1007/978-3-642-96545-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01978578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020117071", 
          "https://doi.org/10.1007/bf01978578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02423220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024564561", 
          "https://doi.org/10.1007/bf02423220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02423219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042584287", 
          "https://doi.org/10.1007/bf02423219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00137988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023435291", 
          "https://doi.org/10.1007/bf00137988"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1984-06", 
    "datePublishedReg": "1984-06-01", 
    "description": "The simulation model accounts for four major compartments in the global carbon cycle: atmosphere, ocean, terrestrial biosphere and fossil carbon reservoir. The ocean is further compartmentalized into a high and a low latitude surface layer, and into 10 deep sea strata. The oceanic carbon fluxes are caused by massflow of descending and upwelling water, by precipitation of organic material and by diffusion exchange.The biosphere is horizontally subdivided into six ecosystems and vertically into leaves, branches, stemwood, roots, litter, young humus and stable soil carbon. Deforestation, slash and burn agriculture, rangeland burning and shifts in land use have been included. The atmosphere is treated as one well mixed reservoir. Fossil fuel consumption is simulated with historic data, and with IIASA scenario's for the future. Using the low IIASA scenario an atmospheric CO2 concentration of 431 ppmv is simulated for 2030 AD. A sensitivity analysis shows the importance of different parameters and of human behaviour. Notwithstanding the large size of the biosphere fluxes, the atmospheric CO2 concentration in the next century will be predominantly determined by the growth rate of fossil fuel consumption.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00144611", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1028211", 
        "issn": [
          "0165-0009", 
          "1573-1480"
        ], 
        "name": "Climatic Change", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "global carbon cycle", 
      "atmospheric CO2 concentration", 
      "carbon cycle", 
      "CO2 concentration", 
      "oceanic carbon flux", 
      "upwelling waters", 
      "carbon reservoir", 
      "biosphere fluxes", 
      "terrestrial biosphere", 
      "mixed reservoir", 
      "carbon flux", 
      "diffusion exchange", 
      "man's impact", 
      "biosphere", 
      "next century", 
      "land use", 
      "rangeland burning", 
      "organic materials", 
      "stable soil carbon", 
      "Ocean", 
      "historic data", 
      "surface layer", 
      "soil carbon", 
      "fossil fuel consumption", 
      "reservoir", 
      "flux", 
      "atmosphere", 
      "strata", 
      "precipitation", 
      "ppmv", 
      "major compartments", 
      "massflow", 
      "cycle", 
      "ecosystems", 
      "water", 
      "deforestation", 
      "scenarios", 
      "sensitivity analysis", 
      "carbon", 
      "humus", 
      "burning", 
      "impact", 
      "simulation model", 
      "concentration", 
      "agriculture", 
      "century", 
      "layer", 
      "large size", 
      "exchange", 
      "shift", 
      "data", 
      "model", 
      "growth rate", 
      "future", 
      "importance", 
      "different parameters", 
      "branches", 
      "AD", 
      "litter", 
      "materials", 
      "parameters", 
      "analysis", 
      "rate", 
      "stemwood", 
      "study", 
      "roots", 
      "size", 
      "behavior", 
      "use", 
      "compartments", 
      "simulation study", 
      "consumption", 
      "human behavior", 
      "fuel consumption", 
      "leaves", 
      "fossil carbon reservoir", 
      "low latitude surface layer", 
      "latitude surface layer", 
      "deep sea strata", 
      "sea strata", 
      "young humus", 
      "IIASA scenario's", 
      "low IIASA scenario"
    ], 
    "name": "A simulation study for the global carbon cycle, including man's impact on the biosphere", 
    "pagination": "167-192", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050918192"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00144611"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00144611", 
      "https://app.dimensions.ai/details/publication/pub.1050918192"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_167.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00144611"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00144611'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00144611'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00144611'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00144611'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      22 PREDICATES      114 URIs      101 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00144611 schema:about anzsrc-for:04
2 anzsrc-for:0405
3 schema:author N3f54814440964376b66702b8fe3d3eda
4 schema:citation sg:pub.10.1007/978-3-642-96545-6
5 sg:pub.10.1007/bf00137988
6 sg:pub.10.1007/bf01978578
7 sg:pub.10.1007/bf02423219
8 sg:pub.10.1007/bf02423220
9 schema:datePublished 1984-06
10 schema:datePublishedReg 1984-06-01
11 schema:description The simulation model accounts for four major compartments in the global carbon cycle: atmosphere, ocean, terrestrial biosphere and fossil carbon reservoir. The ocean is further compartmentalized into a high and a low latitude surface layer, and into 10 deep sea strata. The oceanic carbon fluxes are caused by massflow of descending and upwelling water, by precipitation of organic material and by diffusion exchange.The biosphere is horizontally subdivided into six ecosystems and vertically into leaves, branches, stemwood, roots, litter, young humus and stable soil carbon. Deforestation, slash and burn agriculture, rangeland burning and shifts in land use have been included. The atmosphere is treated as one well mixed reservoir. Fossil fuel consumption is simulated with historic data, and with IIASA scenario's for the future. Using the low IIASA scenario an atmospheric CO2 concentration of 431 ppmv is simulated for 2030 AD. A sensitivity analysis shows the importance of different parameters and of human behaviour. Notwithstanding the large size of the biosphere fluxes, the atmospheric CO2 concentration in the next century will be predominantly determined by the growth rate of fossil fuel consumption.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf Nbb2f1cd6c0ed4b968c93ad3cdcbe5f00
16 Nf9f01a2db001451b87e663c00c620f48
17 sg:journal.1028211
18 schema:keywords AD
19 CO2 concentration
20 IIASA scenario's
21 Ocean
22 agriculture
23 analysis
24 atmosphere
25 atmospheric CO2 concentration
26 behavior
27 biosphere
28 biosphere fluxes
29 branches
30 burning
31 carbon
32 carbon cycle
33 carbon flux
34 carbon reservoir
35 century
36 compartments
37 concentration
38 consumption
39 cycle
40 data
41 deep sea strata
42 deforestation
43 different parameters
44 diffusion exchange
45 ecosystems
46 exchange
47 flux
48 fossil carbon reservoir
49 fossil fuel consumption
50 fuel consumption
51 future
52 global carbon cycle
53 growth rate
54 historic data
55 human behavior
56 humus
57 impact
58 importance
59 land use
60 large size
61 latitude surface layer
62 layer
63 leaves
64 litter
65 low IIASA scenario
66 low latitude surface layer
67 major compartments
68 man's impact
69 massflow
70 materials
71 mixed reservoir
72 model
73 next century
74 oceanic carbon flux
75 organic materials
76 parameters
77 ppmv
78 precipitation
79 rangeland burning
80 rate
81 reservoir
82 roots
83 scenarios
84 sea strata
85 sensitivity analysis
86 shift
87 simulation model
88 simulation study
89 size
90 soil carbon
91 stable soil carbon
92 stemwood
93 strata
94 study
95 surface layer
96 terrestrial biosphere
97 upwelling waters
98 use
99 water
100 young humus
101 schema:name A simulation study for the global carbon cycle, including man's impact on the biosphere
102 schema:pagination 167-192
103 schema:productId N2212f98236fa45cd84b42146b949e132
104 N6e645b8277c64375b423c8c832d6f11a
105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050918192
106 https://doi.org/10.1007/bf00144611
107 schema:sdDatePublished 2022-01-01T18:02
108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
109 schema:sdPublisher N199a13d16d9045dca1b69146f90f288c
110 schema:url https://doi.org/10.1007/bf00144611
111 sgo:license sg:explorer/license/
112 sgo:sdDataset articles
113 rdf:type schema:ScholarlyArticle
114 N199a13d16d9045dca1b69146f90f288c schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 N2212f98236fa45cd84b42146b949e132 schema:name doi
117 schema:value 10.1007/bf00144611
118 rdf:type schema:PropertyValue
119 N29bb16693a364ed2be4cfcc954dbfc1d rdf:first sg:person.014063230367.61
120 rdf:rest rdf:nil
121 N3f54814440964376b66702b8fe3d3eda rdf:first sg:person.012751452074.04
122 rdf:rest N29bb16693a364ed2be4cfcc954dbfc1d
123 N6e645b8277c64375b423c8c832d6f11a schema:name dimensions_id
124 schema:value pub.1050918192
125 rdf:type schema:PropertyValue
126 Nbb2f1cd6c0ed4b968c93ad3cdcbe5f00 schema:volumeNumber 6
127 rdf:type schema:PublicationVolume
128 Nf9f01a2db001451b87e663c00c620f48 schema:issueNumber 2
129 rdf:type schema:PublicationIssue
130 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
131 schema:name Earth Sciences
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
134 schema:name Oceanography
135 rdf:type schema:DefinedTerm
136 sg:journal.1028211 schema:issn 0165-0009
137 1573-1480
138 schema:name Climatic Change
139 schema:publisher Springer Nature
140 rdf:type schema:Periodical
141 sg:person.012751452074.04 schema:affiliation grid-institutes:grid.4818.5
142 schema:familyName Goudriaan
143 schema:givenName J.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012751452074.04
145 rdf:type schema:Person
146 sg:person.014063230367.61 schema:affiliation grid-institutes:grid.4818.5
147 schema:familyName Ketner
148 schema:givenName P.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014063230367.61
150 rdf:type schema:Person
151 sg:pub.10.1007/978-3-642-96545-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109711441
152 https://doi.org/10.1007/978-3-642-96545-6
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/bf00137988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023435291
155 https://doi.org/10.1007/bf00137988
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/bf01978578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020117071
158 https://doi.org/10.1007/bf01978578
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/bf02423219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042584287
161 https://doi.org/10.1007/bf02423219
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/bf02423220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024564561
164 https://doi.org/10.1007/bf02423220
165 rdf:type schema:CreativeWork
166 grid-institutes:grid.4818.5 schema:alternateName Department of Theoretical Production Ecology, Agricultural University, Bornsesteeg 65, 6708 PD, Wageningen, The Netherlands
167 Department of Vegetation Science, Plant Ecology and Weed Science, Agricultural University, Bornse-steeg 69, 6708 PD, Wageningen, The Netherlands
168 schema:name Department of Theoretical Production Ecology, Agricultural University, Bornsesteeg 65, 6708 PD, Wageningen, The Netherlands
169 Department of Vegetation Science, Plant Ecology and Weed Science, Agricultural University, Bornse-steeg 69, 6708 PD, Wageningen, The Netherlands
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...