Constraint query algebras View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1996-09

AUTHORS

Dina Q Goldin, Paris C. Kanellakis

ABSTRACT

Constraint query languages are natural extensions of relational database query languages. A framework for their declarative specification (constraint calculi) and efficient implementation (low data complexity and secondary storage indexing) was presented in Kanellakis et al., 1995. Constraint query algebras form a procedural language layer between high-level declarative calculi and low-level indexing methods. Just like the relational algebra, this intermediate layer can be very useful for program optimization. In this paper, we study properties of constraint query algebras, which we present through three concrete examples. The dense order constraint algebra illustrates how the appropriate canonical form can simplify expensive operations, such as projection, and facilitate interaction with updates. The monotone two-variable linear constraint algebra illustrates the concept of strongly polynomial operations. Finally, the lazy evaluation of (non)linear constraint algebras illustrates how large numbers of (non)linear constraints could be implemented with only a small amount of costly symbolic processing. More... »

PAGES

45-83

References to SciGraph publications

Journal

TITLE

Constraints

ISSUE

1-2

VOLUME

1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00143878

DOI

http://dx.doi.org/10.1007/bf00143878

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029373716


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Brown University", 
          "id": "https://www.grid.ac/institutes/grid.40263.33", 
          "name": [
            "Computer Science Department, Brown University, Box 1910, 02912, Providence, RI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goldin", 
        "givenName": "Dina Q", 
        "id": "sg:person.010434673020.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010434673020.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brown University", 
          "id": "https://www.grid.ac/institutes/grid.40263.33", 
          "name": [
            "Computer Science Department, Brown University, Box 1910, 02912, Providence, RI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kanellakis", 
        "givenName": "Paris C.", 
        "id": "sg:person.011035156015.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011035156015.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/62212.62232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001089937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/42267.42273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003268724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-57887-0_92", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004913479", 
          "https://doi.org/10.1007/3-540-57887-0_92"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0000(82)90012-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006665882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/298514.298584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007118830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-60178-3_96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010335730", 
          "https://doi.org/10.1007/3-540-60178-3_96"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/362384.362685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014251677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0747-7171(10)80003-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014616041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/137097.137897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018015867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1021021236", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1098-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021021236", 
          "https://doi.org/10.1007/978-1-4612-1098-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1098-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021021236", 
          "https://doi.org/10.1007/978-1-4612-1098-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/67544.66942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021048404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcss.1995.1051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021703969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3975(77)90037-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022095419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/237661.237673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026273281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/41625.41635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026286480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/359642.359654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029718467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00288683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032694395", 
          "https://doi.org/10.1007/bf00288683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/79204.79210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040284563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0255(74)90008-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042040952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0255(74)90008-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042040952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/357146.357147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042566766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-3702(92)90043-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046100442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-3702(92)90043-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046100442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/322261.322272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046101258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-3702(91)90006-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048338888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-3702(91)90006-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048338888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1461551.1461591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053518322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0209063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062841552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0097539793251876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062879837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lics.1995.523246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093609912"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-09", 
    "datePublishedReg": "1996-09-01", 
    "description": "Constraint query languages are natural extensions of relational database query languages. A framework for their declarative specification (constraint calculi) and efficient implementation (low data complexity and secondary storage indexing) was presented in Kanellakis et al., 1995. Constraint query algebras form a procedural language layer between high-level declarative calculi and low-level indexing methods. Just like the relational algebra, this intermediate layer can be very useful for program optimization. In this paper, we study properties of constraint query algebras, which we present through three concrete examples. The dense order constraint algebra illustrates how the appropriate canonical form can simplify expensive operations, such as projection, and facilitate interaction with updates. The monotone two-variable linear constraint algebra illustrates the concept of strongly polynomial operations. Finally, the lazy evaluation of (non)linear constraint algebras illustrates how large numbers of (non)linear constraints could be implemented with only a small amount of costly symbolic processing.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00143878", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043977", 
        "issn": [
          "1383-7133", 
          "1572-9354"
        ], 
        "name": "Constraints", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "Constraint query algebras", 
    "pagination": "45-83", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8bee9abd84722d64be96e83839c724478c50ce01c527cbe45bbb13476fc0b878"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00143878"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029373716"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00143878", 
      "https://app.dimensions.ai/details/publication/pub.1029373716"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130820_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00143878"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00143878'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00143878'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00143878'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00143878'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00143878 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nda7cba5103f647d68e394efcc38f601b
4 schema:citation sg:pub.10.1007/3-540-57887-0_92
5 sg:pub.10.1007/3-540-60178-3_96
6 sg:pub.10.1007/978-1-4612-1098-6
7 sg:pub.10.1007/bf00288683
8 https://app.dimensions.ai/details/publication/pub.1021021236
9 https://doi.org/10.1006/jcss.1995.1051
10 https://doi.org/10.1016/0004-3702(91)90006-6
11 https://doi.org/10.1016/0004-3702(92)90043-w
12 https://doi.org/10.1016/0020-0255(74)90008-5
13 https://doi.org/10.1016/0022-0000(82)90012-5
14 https://doi.org/10.1016/0304-3975(77)90037-8
15 https://doi.org/10.1016/s0747-7171(10)80003-3
16 https://doi.org/10.1109/lics.1995.523246
17 https://doi.org/10.1137/0209063
18 https://doi.org/10.1137/s0097539793251876
19 https://doi.org/10.1145/137097.137897
20 https://doi.org/10.1145/1461551.1461591
21 https://doi.org/10.1145/237661.237673
22 https://doi.org/10.1145/298514.298584
23 https://doi.org/10.1145/322261.322272
24 https://doi.org/10.1145/357146.357147
25 https://doi.org/10.1145/359642.359654
26 https://doi.org/10.1145/362384.362685
27 https://doi.org/10.1145/41625.41635
28 https://doi.org/10.1145/42267.42273
29 https://doi.org/10.1145/62212.62232
30 https://doi.org/10.1145/67544.66942
31 https://doi.org/10.1145/79204.79210
32 schema:datePublished 1996-09
33 schema:datePublishedReg 1996-09-01
34 schema:description Constraint query languages are natural extensions of relational database query languages. A framework for their declarative specification (constraint calculi) and efficient implementation (low data complexity and secondary storage indexing) was presented in Kanellakis et al., 1995. Constraint query algebras form a procedural language layer between high-level declarative calculi and low-level indexing methods. Just like the relational algebra, this intermediate layer can be very useful for program optimization. In this paper, we study properties of constraint query algebras, which we present through three concrete examples. The dense order constraint algebra illustrates how the appropriate canonical form can simplify expensive operations, such as projection, and facilitate interaction with updates. The monotone two-variable linear constraint algebra illustrates the concept of strongly polynomial operations. Finally, the lazy evaluation of (non)linear constraint algebras illustrates how large numbers of (non)linear constraints could be implemented with only a small amount of costly symbolic processing.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N25896ec007864d709bdbc676d0459e92
39 N34d92f7f545f44a089f8fe4b9f4ea2e1
40 sg:journal.1043977
41 schema:name Constraint query algebras
42 schema:pagination 45-83
43 schema:productId N7ad756408c4f47a481ea82c6166a5a23
44 Na89e443aa9af48f7af7550965ccd154d
45 Nf72f883f92f0463f9281f96e529f8362
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029373716
47 https://doi.org/10.1007/bf00143878
48 schema:sdDatePublished 2019-04-11T13:57
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N437a7f453efb43edb159c946f33ec194
51 schema:url http://link.springer.com/10.1007/BF00143878
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N25896ec007864d709bdbc676d0459e92 schema:volumeNumber 1
56 rdf:type schema:PublicationVolume
57 N34d92f7f545f44a089f8fe4b9f4ea2e1 schema:issueNumber 1-2
58 rdf:type schema:PublicationIssue
59 N437a7f453efb43edb159c946f33ec194 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N7ad756408c4f47a481ea82c6166a5a23 schema:name dimensions_id
62 schema:value pub.1029373716
63 rdf:type schema:PropertyValue
64 Na89e443aa9af48f7af7550965ccd154d schema:name doi
65 schema:value 10.1007/bf00143878
66 rdf:type schema:PropertyValue
67 Nc72c7c88b98c4423a2a2fd6dcb173182 rdf:first sg:person.011035156015.76
68 rdf:rest rdf:nil
69 Nda7cba5103f647d68e394efcc38f601b rdf:first sg:person.010434673020.68
70 rdf:rest Nc72c7c88b98c4423a2a2fd6dcb173182
71 Nf72f883f92f0463f9281f96e529f8362 schema:name readcube_id
72 schema:value 8bee9abd84722d64be96e83839c724478c50ce01c527cbe45bbb13476fc0b878
73 rdf:type schema:PropertyValue
74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
75 schema:name Mathematical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
78 schema:name Pure Mathematics
79 rdf:type schema:DefinedTerm
80 sg:journal.1043977 schema:issn 1383-7133
81 1572-9354
82 schema:name Constraints
83 rdf:type schema:Periodical
84 sg:person.010434673020.68 schema:affiliation https://www.grid.ac/institutes/grid.40263.33
85 schema:familyName Goldin
86 schema:givenName Dina Q
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010434673020.68
88 rdf:type schema:Person
89 sg:person.011035156015.76 schema:affiliation https://www.grid.ac/institutes/grid.40263.33
90 schema:familyName Kanellakis
91 schema:givenName Paris C.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011035156015.76
93 rdf:type schema:Person
94 sg:pub.10.1007/3-540-57887-0_92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004913479
95 https://doi.org/10.1007/3-540-57887-0_92
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/3-540-60178-3_96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010335730
98 https://doi.org/10.1007/3-540-60178-3_96
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/978-1-4612-1098-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021021236
101 https://doi.org/10.1007/978-1-4612-1098-6
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf00288683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032694395
104 https://doi.org/10.1007/bf00288683
105 rdf:type schema:CreativeWork
106 https://app.dimensions.ai/details/publication/pub.1021021236 schema:CreativeWork
107 https://doi.org/10.1006/jcss.1995.1051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021703969
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/0004-3702(91)90006-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048338888
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0004-3702(92)90043-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1046100442
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/0020-0255(74)90008-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042040952
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/0022-0000(82)90012-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006665882
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/0304-3975(77)90037-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022095419
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/s0747-7171(10)80003-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014616041
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/lics.1995.523246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093609912
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1137/0209063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062841552
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1137/s0097539793251876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062879837
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1145/137097.137897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018015867
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1145/1461551.1461591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053518322
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1145/237661.237673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026273281
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1145/298514.298584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007118830
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1145/322261.322272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046101258
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1145/357146.357147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042566766
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1145/359642.359654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029718467
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1145/362384.362685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014251677
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1145/41625.41635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026286480
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1145/42267.42273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003268724
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1145/62212.62232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001089937
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1145/67544.66942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021048404
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1145/79204.79210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040284563
152 rdf:type schema:CreativeWork
153 https://www.grid.ac/institutes/grid.40263.33 schema:alternateName Brown University
154 schema:name Computer Science Department, Brown University, Box 1910, 02912, Providence, RI, USA
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...