Trends in global temperature View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-05

AUTHORS

Peter Bloomfield

ABSTRACT

Statistical models consisting of a trend plus serially correlated noise may be fitted to observed climate data such as global surface temperature, the trend and noise representing systematic change and other variations, respectively. When such a model is fitted, the estimated character of the noise determines the precision of the estimated trend, and hence the precision of the estimate of the magnitude of the systematic change in the variable considered. The results of fitting such models to global temperature imply that there is uncertainty in the amount of temperature change over the past century of up to ± 0.2 °C, but that the change of around one half of a degree Celsius is significantly different from zero. The statistical models for climate variability also imply that the observed temperature data provide only imprecise information about the climate sensitivity. This is defined here as the equilibrium response of global temperature to a doubling of the atmospheric concentration of carbon dioxide. The temperature changes observed to date are compatible with a wide range of climate sensitivities, from 0.7 °C to 2.2 °C. When data uncertainties are taken into account, the interval widens even further. More... »

PAGES

1-16

Journal

TITLE

Climatic Change

ISSUE

1

VOLUME

21

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00143250

DOI

http://dx.doi.org/10.1007/bf00143250

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016077135


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Statistics, North Carolina State University, Box 8203, Raleigh, NC 27695-8203, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bloomfield", 
        "givenName": "Peter", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/344324a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000092146", 
          "https://doi.org/10.1038/344324a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/350219a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011203009", 
          "https://doi.org/10.1038/350219a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00149003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012419808", 
          "https://doi.org/10.1007/bf00149003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00149003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012419808", 
          "https://doi.org/10.1007/bf00149003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0477(1990)071<0288:sccgw>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015343875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/330127a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016835893", 
          "https://doi.org/10.1038/330127a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.3370060302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016976187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/346713a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017800546", 
          "https://doi.org/10.1038/346713a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-444-88351-3.50018-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018476549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1982)039<1446:seocew>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018574590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jd092id11p13345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025791400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1988)001<0654:hsatvr>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027056055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/292205a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031374754", 
          "https://doi.org/10.1038/292205a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/292205a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031374754", 
          "https://doi.org/10.1038/292205a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/322430a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032895113", 
          "https://doi.org/10.1038/322430a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/339365a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038295809", 
          "https://doi.org/10.1038/339365a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/339365a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038295809", 
          "https://doi.org/10.1038/339365a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/gl015i004p00323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041393140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/349503a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041655521", 
          "https://doi.org/10.1038/349503a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0450(1986)025<1213:shsatv>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042758895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00140555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050205673", 
          "https://doi.org/10.1007/bf00140555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00140555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050205673", 
          "https://doi.org/10.1007/bf00140555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/343709a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050941284", 
          "https://doi.org/10.1038/343709a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0450(1986)025<0161:nhsatv>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051729171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/68.1.165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059419039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.251.4997.1058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062541578"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1992-05", 
    "datePublishedReg": "1992-05-01", 
    "description": "Statistical models consisting of a trend plus serially correlated noise may be fitted to observed climate data such as global surface temperature, the trend and noise representing systematic change and other variations, respectively. When such a model is fitted, the estimated character of the noise determines the precision of the estimated trend, and hence the precision of the estimate of the magnitude of the systematic change in the variable considered. The results of fitting such models to global temperature imply that there is uncertainty in the amount of temperature change over the past century of up to \u00b1 0.2 \u00b0C, but that the change of around one half of a degree Celsius is significantly different from zero. The statistical models for climate variability also imply that the observed temperature data provide only imprecise information about the climate sensitivity. This is defined here as the equilibrium response of global temperature to a doubling of the atmospheric concentration of carbon dioxide. The temperature changes observed to date are compatible with a wide range of climate sensitivities, from 0.7 \u00b0C to 2.2 \u00b0C. When data uncertainties are taken into account, the interval widens even further.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00143250", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028211", 
        "issn": [
          "0165-0009", 
          "1573-1480"
        ], 
        "name": "Climatic Change", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Trends in global temperature", 
    "pagination": "1-16", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4c9ab5c7f01668820e243bdb7575f5d2d1cc124c143b53e2bb926531dbddb3d3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00143250"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016077135"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00143250", 
      "https://app.dimensions.ai/details/publication/pub.1016077135"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130826_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00143250"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00143250'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00143250'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00143250'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00143250'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00143250 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N397bd23208804d37b086f8d8ad48eb3e
4 schema:citation sg:pub.10.1007/bf00140555
5 sg:pub.10.1007/bf00149003
6 sg:pub.10.1038/292205a0
7 sg:pub.10.1038/322430a0
8 sg:pub.10.1038/330127a0
9 sg:pub.10.1038/339365a0
10 sg:pub.10.1038/343709a0
11 sg:pub.10.1038/344324a0
12 sg:pub.10.1038/346713a0
13 sg:pub.10.1038/349503a0
14 sg:pub.10.1038/350219a0
15 https://doi.org/10.1002/joc.3370060302
16 https://doi.org/10.1016/b978-0-444-88351-3.50018-0
17 https://doi.org/10.1029/gl015i004p00323
18 https://doi.org/10.1029/jd092id11p13345
19 https://doi.org/10.1093/biomet/68.1.165
20 https://doi.org/10.1126/science.251.4997.1058
21 https://doi.org/10.1175/1520-0442(1988)001<0654:hsatvr>2.0.co;2
22 https://doi.org/10.1175/1520-0450(1986)025<0161:nhsatv>2.0.co;2
23 https://doi.org/10.1175/1520-0450(1986)025<1213:shsatv>2.0.co;2
24 https://doi.org/10.1175/1520-0469(1982)039<1446:seocew>2.0.co;2
25 https://doi.org/10.1175/1520-0477(1990)071<0288:sccgw>2.0.co;2
26 schema:datePublished 1992-05
27 schema:datePublishedReg 1992-05-01
28 schema:description Statistical models consisting of a trend plus serially correlated noise may be fitted to observed climate data such as global surface temperature, the trend and noise representing systematic change and other variations, respectively. When such a model is fitted, the estimated character of the noise determines the precision of the estimated trend, and hence the precision of the estimate of the magnitude of the systematic change in the variable considered. The results of fitting such models to global temperature imply that there is uncertainty in the amount of temperature change over the past century of up to ± 0.2 °C, but that the change of around one half of a degree Celsius is significantly different from zero. The statistical models for climate variability also imply that the observed temperature data provide only imprecise information about the climate sensitivity. This is defined here as the equilibrium response of global temperature to a doubling of the atmospheric concentration of carbon dioxide. The temperature changes observed to date are compatible with a wide range of climate sensitivities, from 0.7 °C to 2.2 °C. When data uncertainties are taken into account, the interval widens even further.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N0d8fcbd378a44a3b9a2b6a92151c02c8
33 N21cf137c73b642ec8de342670b7a0626
34 sg:journal.1028211
35 schema:name Trends in global temperature
36 schema:pagination 1-16
37 schema:productId N061959f0ed1d48708147c8f45dfe3119
38 N2a79eb174d2445679ba4e0a00fbdf35d
39 N4dbca3f5bad14b09a90a2e6018b79761
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016077135
41 https://doi.org/10.1007/bf00143250
42 schema:sdDatePublished 2019-04-11T13:59
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Nbc55623f3fcd4610b64ca5172e455194
45 schema:url http://link.springer.com/10.1007/BF00143250
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N061959f0ed1d48708147c8f45dfe3119 schema:name doi
50 schema:value 10.1007/bf00143250
51 rdf:type schema:PropertyValue
52 N0d8fcbd378a44a3b9a2b6a92151c02c8 schema:volumeNumber 21
53 rdf:type schema:PublicationVolume
54 N21cf137c73b642ec8de342670b7a0626 schema:issueNumber 1
55 rdf:type schema:PublicationIssue
56 N28c58953f094475c9cda75043ec7d56e schema:affiliation N660628ef9abf4f49993dedf7ddfe6d9c
57 schema:familyName Bloomfield
58 schema:givenName Peter
59 rdf:type schema:Person
60 N2a79eb174d2445679ba4e0a00fbdf35d schema:name dimensions_id
61 schema:value pub.1016077135
62 rdf:type schema:PropertyValue
63 N397bd23208804d37b086f8d8ad48eb3e rdf:first N28c58953f094475c9cda75043ec7d56e
64 rdf:rest rdf:nil
65 N4dbca3f5bad14b09a90a2e6018b79761 schema:name readcube_id
66 schema:value 4c9ab5c7f01668820e243bdb7575f5d2d1cc124c143b53e2bb926531dbddb3d3
67 rdf:type schema:PropertyValue
68 N660628ef9abf4f49993dedf7ddfe6d9c schema:name Department of Statistics, North Carolina State University, Box 8203, Raleigh, NC 27695-8203, U.S.A.
69 rdf:type schema:Organization
70 Nbc55623f3fcd4610b64ca5172e455194 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
73 schema:name Mathematical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
76 schema:name Statistics
77 rdf:type schema:DefinedTerm
78 sg:journal.1028211 schema:issn 0165-0009
79 1573-1480
80 schema:name Climatic Change
81 rdf:type schema:Periodical
82 sg:pub.10.1007/bf00140555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050205673
83 https://doi.org/10.1007/bf00140555
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/bf00149003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012419808
86 https://doi.org/10.1007/bf00149003
87 rdf:type schema:CreativeWork
88 sg:pub.10.1038/292205a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031374754
89 https://doi.org/10.1038/292205a0
90 rdf:type schema:CreativeWork
91 sg:pub.10.1038/322430a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032895113
92 https://doi.org/10.1038/322430a0
93 rdf:type schema:CreativeWork
94 sg:pub.10.1038/330127a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016835893
95 https://doi.org/10.1038/330127a0
96 rdf:type schema:CreativeWork
97 sg:pub.10.1038/339365a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038295809
98 https://doi.org/10.1038/339365a0
99 rdf:type schema:CreativeWork
100 sg:pub.10.1038/343709a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050941284
101 https://doi.org/10.1038/343709a0
102 rdf:type schema:CreativeWork
103 sg:pub.10.1038/344324a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000092146
104 https://doi.org/10.1038/344324a0
105 rdf:type schema:CreativeWork
106 sg:pub.10.1038/346713a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017800546
107 https://doi.org/10.1038/346713a0
108 rdf:type schema:CreativeWork
109 sg:pub.10.1038/349503a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041655521
110 https://doi.org/10.1038/349503a0
111 rdf:type schema:CreativeWork
112 sg:pub.10.1038/350219a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011203009
113 https://doi.org/10.1038/350219a0
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1002/joc.3370060302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016976187
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/b978-0-444-88351-3.50018-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018476549
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1029/gl015i004p00323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041393140
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1029/jd092id11p13345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025791400
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1093/biomet/68.1.165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059419039
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1126/science.251.4997.1058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062541578
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1175/1520-0442(1988)001<0654:hsatvr>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027056055
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1175/1520-0450(1986)025<0161:nhsatv>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051729171
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1175/1520-0450(1986)025<1213:shsatv>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042758895
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1175/1520-0469(1982)039<1446:seocew>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018574590
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1175/1520-0477(1990)071<0288:sccgw>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015343875
136 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...