Machine learning: a survey of current techniques View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1989-12

AUTHORS

Carlton McDonald

ABSTRACT

Machine learning is the essence of machine intelligence. When we have systems that learn, we will have true artificial intelligence. Many machine-learning strategies exist, this paper reviews the state of the art in machine learning and provides a glimpse of the pioneers of present machine-learning systems and strategies. Learning in noisy domains, the evolutionary learning, learning by analogy and explanation-based learning are just some of the methods covered. Emphasis is placed on the algorithms employed by many of the systems, and the merits and disadvantages of various approaches. Finally an examination of VanLehn's theory of impasse-driven learning is made. More... »

PAGES

243-280

References to SciGraph publications

  • 1986-03. Editorial in ARTIFICIAL INTELLIGENCE REVIEW
  • 1986-03. Explanation-based generalization: A unifying view in MACHINE LEARNING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00141197

    DOI

    http://dx.doi.org/10.1007/bf00141197

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1033914057


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Department of Computer Science, Coventry Polytechnic, Coventry, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "McDonald", 
            "givenName": "Carlton", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01988523", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002458292", 
              "https://doi.org/10.1007/bf01988523"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0004-3702(87)90050-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017697783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0004-3702(87)90050-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017697783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00116250", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017707493", 
              "https://doi.org/10.1007/bf00116250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0004-3702(83)90008-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017783675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0004-3702(83)90008-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017783675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1108/eb005587", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022661580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/0033-295x.86.2.124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028932946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1045343.1045364", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030317966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1207/s15516709cog0502_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035913557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1207/s15516709cog0502_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035913557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1207/s15516709cog0404_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039397204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1207/s15516709cog0404_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039397204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/0033-295x.92.1.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045407140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0004-3702(81)90002-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050964229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0004-3702(81)90002-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050964229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.2044-8279.1971.tb00656.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051090756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/359038.359042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051763216"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1989-12", 
        "datePublishedReg": "1989-12-01", 
        "description": "Machine learning is the essence of machine intelligence. When we have systems that learn, we will have true artificial intelligence. Many machine-learning strategies exist, this paper reviews the state of the art in machine learning and provides a glimpse of the pioneers of present machine-learning systems and strategies. Learning in noisy domains, the evolutionary learning, learning by analogy and explanation-based learning are just some of the methods covered. Emphasis is placed on the algorithms employed by many of the systems, and the merits and disadvantages of various approaches. Finally an examination of VanLehn's theory of impasse-driven learning is made.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf00141197", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1126843", 
            "issn": [
              "0269-2821", 
              "1573-7462"
            ], 
            "name": "Artificial Intelligence Review", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "name": "Machine learning: a survey of current techniques", 
        "pagination": "243-280", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a18e7084dce10d33b6afbd1d10a2885beca068645c71a1339f66217ddc8ce14a"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00141197"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1033914057"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00141197", 
          "https://app.dimensions.ai/details/publication/pub.1033914057"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130814_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF00141197"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00141197'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00141197'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00141197'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00141197'


     

    This table displays all metadata directly associated to this object as RDF triples.

    100 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00141197 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Neb013f6e595d4410ac25b5e05959d99a
    4 schema:citation sg:pub.10.1007/bf00116250
    5 sg:pub.10.1007/bf01988523
    6 https://doi.org/10.1016/0004-3702(81)90002-3
    7 https://doi.org/10.1016/0004-3702(83)90008-5
    8 https://doi.org/10.1016/0004-3702(87)90050-6
    9 https://doi.org/10.1037/0033-295x.86.2.124
    10 https://doi.org/10.1037/0033-295x.92.1.109
    11 https://doi.org/10.1108/eb005587
    12 https://doi.org/10.1111/j.2044-8279.1971.tb00656.x
    13 https://doi.org/10.1145/1045343.1045364
    14 https://doi.org/10.1145/359038.359042
    15 https://doi.org/10.1207/s15516709cog0404_3
    16 https://doi.org/10.1207/s15516709cog0502_3
    17 schema:datePublished 1989-12
    18 schema:datePublishedReg 1989-12-01
    19 schema:description Machine learning is the essence of machine intelligence. When we have systems that learn, we will have true artificial intelligence. Many machine-learning strategies exist, this paper reviews the state of the art in machine learning and provides a glimpse of the pioneers of present machine-learning systems and strategies. Learning in noisy domains, the evolutionary learning, learning by analogy and explanation-based learning are just some of the methods covered. Emphasis is placed on the algorithms employed by many of the systems, and the merits and disadvantages of various approaches. Finally an examination of VanLehn's theory of impasse-driven learning is made.
    20 schema:genre research_article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N1aa35aace48a4737944f80adc14e74db
    24 Nfb7ec5dd111947b08a633f3542899d3d
    25 sg:journal.1126843
    26 schema:name Machine learning: a survey of current techniques
    27 schema:pagination 243-280
    28 schema:productId N411ed22ca90641d690ae526cb2cc105f
    29 N7f863b6faf1342169f90d2882cdaa914
    30 Na405b798107344e48c4a948812c700f0
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033914057
    32 https://doi.org/10.1007/bf00141197
    33 schema:sdDatePublished 2019-04-11T13:55
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher Nf84fda8398ce4b7e82ced3ac249667a9
    36 schema:url http://link.springer.com/10.1007/BF00141197
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset articles
    39 rdf:type schema:ScholarlyArticle
    40 N0f5c5f9385ac44398cf5c9222710d73b schema:name Department of Computer Science, Coventry Polytechnic, Coventry, UK
    41 rdf:type schema:Organization
    42 N1aa35aace48a4737944f80adc14e74db schema:issueNumber 4
    43 rdf:type schema:PublicationIssue
    44 N411ed22ca90641d690ae526cb2cc105f schema:name doi
    45 schema:value 10.1007/bf00141197
    46 rdf:type schema:PropertyValue
    47 N7f863b6faf1342169f90d2882cdaa914 schema:name readcube_id
    48 schema:value a18e7084dce10d33b6afbd1d10a2885beca068645c71a1339f66217ddc8ce14a
    49 rdf:type schema:PropertyValue
    50 N8fcae062c8db4f3db9b050f5c41ebd52 schema:affiliation N0f5c5f9385ac44398cf5c9222710d73b
    51 schema:familyName McDonald
    52 schema:givenName Carlton
    53 rdf:type schema:Person
    54 Na405b798107344e48c4a948812c700f0 schema:name dimensions_id
    55 schema:value pub.1033914057
    56 rdf:type schema:PropertyValue
    57 Neb013f6e595d4410ac25b5e05959d99a rdf:first N8fcae062c8db4f3db9b050f5c41ebd52
    58 rdf:rest rdf:nil
    59 Nf84fda8398ce4b7e82ced3ac249667a9 schema:name Springer Nature - SN SciGraph project
    60 rdf:type schema:Organization
    61 Nfb7ec5dd111947b08a633f3542899d3d schema:volumeNumber 3
    62 rdf:type schema:PublicationVolume
    63 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Information and Computing Sciences
    65 rdf:type schema:DefinedTerm
    66 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Artificial Intelligence and Image Processing
    68 rdf:type schema:DefinedTerm
    69 sg:journal.1126843 schema:issn 0269-2821
    70 1573-7462
    71 schema:name Artificial Intelligence Review
    72 rdf:type schema:Periodical
    73 sg:pub.10.1007/bf00116250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017707493
    74 https://doi.org/10.1007/bf00116250
    75 rdf:type schema:CreativeWork
    76 sg:pub.10.1007/bf01988523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002458292
    77 https://doi.org/10.1007/bf01988523
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1016/0004-3702(81)90002-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050964229
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1016/0004-3702(83)90008-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017783675
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1016/0004-3702(87)90050-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017697783
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1037/0033-295x.86.2.124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028932946
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1037/0033-295x.92.1.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045407140
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1108/eb005587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022661580
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1111/j.2044-8279.1971.tb00656.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051090756
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1145/1045343.1045364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030317966
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1145/359038.359042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051763216
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1207/s15516709cog0404_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039397204
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1207/s15516709cog0502_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035913557
    100 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...