Atmospheric response to deep-sea injections of fossil-fuel carbon dioxide View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1979-03

AUTHORS

Martin I. Hoffert, Yeong-Cherng Wey, Andrew J. Callegari, Wallace S. Broecker

ABSTRACT

The possibility of controlling atmospheric carbon dioxide accumulation and attendant climatic effects from fossil-fuel burning by diverting a fraction of the combustion product and injecting it into the deep-ocean, as proposed by Marchetti, is analyzed using an atmosphere/mixed layer/diffusive deep-ocean model for the carbon cycle. The model includes the nonlinear buffering of CO2 at the air/sea interface, and considers the long term trends associated with consuming an assumed fossil-fuel reserve equivalent to 7.09 × 1015 kg carbon as a logistic function of time as in the projections of Siegenthaler and Oeschger, except that atmospheric carbon dioxide levels are computed for five alternate strategies: (a) 100% injected into atmosphere, (b) 50% injected at oceanic depth of 1500 m and 50% into atmosphere, (c) 50% injected at sea floor (4000 m) and 50% into atmosphere, (d) 100% at 1500 m depth and (e) 100% at sea floor. Since no carbon leaves the system, all runs approached the same post-fossil fuel equilibrium after several thousand years, Ca ∼- 1150 ppm, almost four times the pre-fossil fuel value (∼- 300 ppm). But the ‘transient’ response of these cases showed a marked variation ranging from a peak overshoot value of 2800 ppm in the year 2130 for 100% atmospheric injection to a slight decrease to the pre-fossil fuel 300 ppm lasting till 2300 with a subsequent slow approach to equilibrium for the 100% deep-ocean injection. The implications of these results for an oceanic injection strategy to mitigate the climatic impact of fossil-fuel CO2 is discussed, as are the ingredients of a second generation carbon cycle model for carrying out such forecasts on an engineering design basis. More... »

PAGES

53-68

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00138226

DOI

http://dx.doi.org/10.1007/bf00138226

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018226140


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Applied Science, New York University, 10003, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Department of Applied Science, New York University, 10003, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoffert", 
        "givenName": "Martin I.", 
        "id": "sg:person.0615753737.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615753737.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Science, New York University, 10003, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Department of Applied Science, New York University, 10003, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wey", 
        "givenName": "Yeong-Cherng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State University of New York College at Purchase, 10577, Purchase, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.264276.3", 
          "name": [
            "State University of New York College at Purchase, 10577, Purchase, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Callegari", 
        "givenName": "Andrew J.", 
        "id": "sg:person.012624722123.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012624722123.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lamont-Doherty Geological Observatory of Columbia University, 10964, Palisades, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Lamont-Doherty Geological Observatory of Columbia University, 10964, Palisades, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Broecker", 
        "givenName": "Wallace S.", 
        "id": "sg:person.012016473447.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012016473447.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00162777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034409435", 
          "https://doi.org/10.1007/bf00162777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-5016-1_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089739934", 
          "https://doi.org/10.1007/978-1-4899-5016-1_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-1986-3_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020372707", 
          "https://doi.org/10.1007/978-1-4684-1986-3_6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1979-03", 
    "datePublishedReg": "1979-03-01", 
    "description": "The possibility of controlling atmospheric carbon dioxide accumulation and attendant climatic effects from fossil-fuel burning by diverting a fraction of the combustion product and injecting it into the deep-ocean, as proposed by Marchetti, is analyzed using an atmosphere/mixed layer/diffusive deep-ocean model for the carbon cycle. The model includes the nonlinear buffering of CO2 at the air/sea interface, and considers the long term trends associated with consuming an assumed fossil-fuel reserve equivalent to 7.09 \u00d7 1015 kg carbon as a logistic function of time as in the projections of Siegenthaler and Oeschger, except that atmospheric carbon dioxide levels are computed for five alternate strategies: (a) 100% injected into atmosphere, (b) 50% injected at oceanic depth of 1500 m and 50% into atmosphere, (c) 50% injected at sea floor (4000 m) and 50% into atmosphere, (d) 100% at 1500 m depth and (e) 100% at sea floor. Since no carbon leaves the system, all runs approached the same post-fossil fuel equilibrium after several thousand years, Ca \u223c- 1150 ppm, almost four times the pre-fossil fuel value (\u223c- 300 ppm). But the \u2018transient\u2019 response of these cases showed a marked variation ranging from a peak overshoot value of 2800 ppm in the year 2130 for 100% atmospheric injection to a slight decrease to the pre-fossil fuel 300 ppm lasting till 2300 with a subsequent slow approach to equilibrium for the 100% deep-ocean injection. The implications of these results for an oceanic injection strategy to mitigate the climatic impact of fossil-fuel CO2 is discussed, as are the ingredients of a second generation carbon cycle model for carrying out such forecasts on an engineering design basis.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00138226", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028211", 
        "issn": [
          "0165-0009", 
          "1573-1480"
        ], 
        "name": "Climatic Change", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "keywords": [
      "sea floor", 
      "fossil fuel carbon dioxide", 
      "air/sea interface", 
      "atmospheric carbon dioxide accumulation", 
      "atmospheric carbon dioxide levels", 
      "deep ocean injection", 
      "fossil fuel CO2", 
      "deep sea injection", 
      "carbon cycle models", 
      "fossil fuel burning", 
      "long-term trends", 
      "atmospheric response", 
      "sea interface", 
      "oceanic depths", 
      "atmospheric injection", 
      "year 2130", 
      "climatic impacts", 
      "carbon cycle", 
      "climatic effects", 
      "peak overshoot value", 
      "carbon dioxide levels", 
      "term trends", 
      "such forecasts", 
      "carbon dioxide accumulation", 
      "cycle model", 
      "atmosphere", 
      "carbon dioxide", 
      "depth", 
      "floor", 
      "CO2", 
      "carbon", 
      "Oeschger", 
      "marked variation", 
      "forecasts", 
      "ppm", 
      "burning", 
      "Siegenthaler", 
      "Ca", 
      "slight decrease", 
      "projections", 
      "variation", 
      "trends", 
      "model", 
      "combustion products", 
      "dioxide", 
      "buffering", 
      "equilibrium", 
      "cycle", 
      "equivalent", 
      "accumulation", 
      "values", 
      "run", 
      "impact", 
      "fraction", 
      "implications", 
      "injection strategy", 
      "time", 
      "years", 
      "decrease", 
      "response", 
      "Marchetti", 
      "slow approach", 
      "design basis", 
      "logistic function", 
      "basis", 
      "interface", 
      "results", 
      "system", 
      "products", 
      "levels", 
      "injection", 
      "possibility", 
      "overshoot value", 
      "fuel value", 
      "effect", 
      "approach", 
      "alternate strategies", 
      "cases", 
      "strategies", 
      "function", 
      "ingredients"
    ], 
    "name": "Atmospheric response to deep-sea injections of fossil-fuel carbon dioxide", 
    "pagination": "53-68", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018226140"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00138226"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00138226", 
      "https://app.dimensions.ai/details/publication/pub.1018226140"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_137.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00138226"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00138226'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00138226'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00138226'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00138226'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      21 PREDICATES      109 URIs      98 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00138226 schema:about anzsrc-for:04
2 anzsrc-for:0405
3 schema:author Nc6e5a96200a04ec3a20edc3758f100d1
4 schema:citation sg:pub.10.1007/978-1-4684-1986-3_6
5 sg:pub.10.1007/978-1-4899-5016-1_24
6 sg:pub.10.1007/bf00162777
7 schema:datePublished 1979-03
8 schema:datePublishedReg 1979-03-01
9 schema:description The possibility of controlling atmospheric carbon dioxide accumulation and attendant climatic effects from fossil-fuel burning by diverting a fraction of the combustion product and injecting it into the deep-ocean, as proposed by Marchetti, is analyzed using an atmosphere/mixed layer/diffusive deep-ocean model for the carbon cycle. The model includes the nonlinear buffering of CO2 at the air/sea interface, and considers the long term trends associated with consuming an assumed fossil-fuel reserve equivalent to 7.09 × 1015 kg carbon as a logistic function of time as in the projections of Siegenthaler and Oeschger, except that atmospheric carbon dioxide levels are computed for five alternate strategies: (a) 100% injected into atmosphere, (b) 50% injected at oceanic depth of 1500 m and 50% into atmosphere, (c) 50% injected at sea floor (4000 m) and 50% into atmosphere, (d) 100% at 1500 m depth and (e) 100% at sea floor. Since no carbon leaves the system, all runs approached the same post-fossil fuel equilibrium after several thousand years, Ca ∼- 1150 ppm, almost four times the pre-fossil fuel value (∼- 300 ppm). But the ‘transient’ response of these cases showed a marked variation ranging from a peak overshoot value of 2800 ppm in the year 2130 for 100% atmospheric injection to a slight decrease to the pre-fossil fuel 300 ppm lasting till 2300 with a subsequent slow approach to equilibrium for the 100% deep-ocean injection. The implications of these results for an oceanic injection strategy to mitigate the climatic impact of fossil-fuel CO2 is discussed, as are the ingredients of a second generation carbon cycle model for carrying out such forecasts on an engineering design basis.
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf N7ef614b6fcf046bdb71db359611f40ba
13 N8852b61b28bd4677bed545d9e556e588
14 sg:journal.1028211
15 schema:keywords CO2
16 Ca
17 Marchetti
18 Oeschger
19 Siegenthaler
20 accumulation
21 air/sea interface
22 alternate strategies
23 approach
24 atmosphere
25 atmospheric carbon dioxide accumulation
26 atmospheric carbon dioxide levels
27 atmospheric injection
28 atmospheric response
29 basis
30 buffering
31 burning
32 carbon
33 carbon cycle
34 carbon cycle models
35 carbon dioxide
36 carbon dioxide accumulation
37 carbon dioxide levels
38 cases
39 climatic effects
40 climatic impacts
41 combustion products
42 cycle
43 cycle model
44 decrease
45 deep ocean injection
46 deep sea injection
47 depth
48 design basis
49 dioxide
50 effect
51 equilibrium
52 equivalent
53 floor
54 forecasts
55 fossil fuel CO2
56 fossil fuel burning
57 fossil fuel carbon dioxide
58 fraction
59 fuel value
60 function
61 impact
62 implications
63 ingredients
64 injection
65 injection strategy
66 interface
67 levels
68 logistic function
69 long-term trends
70 marked variation
71 model
72 oceanic depths
73 overshoot value
74 peak overshoot value
75 possibility
76 ppm
77 products
78 projections
79 response
80 results
81 run
82 sea floor
83 sea interface
84 slight decrease
85 slow approach
86 strategies
87 such forecasts
88 system
89 term trends
90 time
91 trends
92 values
93 variation
94 year 2130
95 years
96 schema:name Atmospheric response to deep-sea injections of fossil-fuel carbon dioxide
97 schema:pagination 53-68
98 schema:productId N49e72476b6414fb5b7953d78507b105f
99 Nbcdbed81860d423d82c86c17dbdec825
100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018226140
101 https://doi.org/10.1007/bf00138226
102 schema:sdDatePublished 2022-12-01T06:18
103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
104 schema:sdPublisher N5351c1a527114644a7d4321630ee5243
105 schema:url https://doi.org/10.1007/bf00138226
106 sgo:license sg:explorer/license/
107 sgo:sdDataset articles
108 rdf:type schema:ScholarlyArticle
109 N0d3eeedc67444f1bbb1b2d78de527693 rdf:first sg:person.012624722123.46
110 rdf:rest N2f3a0837a1e24563b5ff161a3ed80075
111 N2f3a0837a1e24563b5ff161a3ed80075 rdf:first sg:person.012016473447.53
112 rdf:rest rdf:nil
113 N49e72476b6414fb5b7953d78507b105f schema:name dimensions_id
114 schema:value pub.1018226140
115 rdf:type schema:PropertyValue
116 N5351c1a527114644a7d4321630ee5243 schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 N7ef614b6fcf046bdb71db359611f40ba schema:issueNumber 1
119 rdf:type schema:PublicationIssue
120 N8852b61b28bd4677bed545d9e556e588 schema:volumeNumber 2
121 rdf:type schema:PublicationVolume
122 Na41417ced75440ae856b6f067a051eb4 rdf:first Na7cd3643c8784df3b1d9f8d05a8532a2
123 rdf:rest N0d3eeedc67444f1bbb1b2d78de527693
124 Na7cd3643c8784df3b1d9f8d05a8532a2 schema:affiliation grid-institutes:grid.137628.9
125 schema:familyName Wey
126 schema:givenName Yeong-Cherng
127 rdf:type schema:Person
128 Nbcdbed81860d423d82c86c17dbdec825 schema:name doi
129 schema:value 10.1007/bf00138226
130 rdf:type schema:PropertyValue
131 Nc6e5a96200a04ec3a20edc3758f100d1 rdf:first sg:person.0615753737.63
132 rdf:rest Na41417ced75440ae856b6f067a051eb4
133 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
134 schema:name Earth Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
137 schema:name Oceanography
138 rdf:type schema:DefinedTerm
139 sg:journal.1028211 schema:issn 0165-0009
140 1573-1480
141 schema:name Climatic Change
142 schema:publisher Springer Nature
143 rdf:type schema:Periodical
144 sg:person.012016473447.53 schema:affiliation grid-institutes:grid.21729.3f
145 schema:familyName Broecker
146 schema:givenName Wallace S.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012016473447.53
148 rdf:type schema:Person
149 sg:person.012624722123.46 schema:affiliation grid-institutes:grid.264276.3
150 schema:familyName Callegari
151 schema:givenName Andrew J.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012624722123.46
153 rdf:type schema:Person
154 sg:person.0615753737.63 schema:affiliation grid-institutes:grid.137628.9
155 schema:familyName Hoffert
156 schema:givenName Martin I.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615753737.63
158 rdf:type schema:Person
159 sg:pub.10.1007/978-1-4684-1986-3_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020372707
160 https://doi.org/10.1007/978-1-4684-1986-3_6
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/978-1-4899-5016-1_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089739934
163 https://doi.org/10.1007/978-1-4899-5016-1_24
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/bf00162777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034409435
166 https://doi.org/10.1007/bf00162777
167 rdf:type schema:CreativeWork
168 grid-institutes:grid.137628.9 schema:alternateName Department of Applied Science, New York University, 10003, New York, USA
169 schema:name Department of Applied Science, New York University, 10003, New York, USA
170 rdf:type schema:Organization
171 grid-institutes:grid.21729.3f schema:alternateName Lamont-Doherty Geological Observatory of Columbia University, 10964, Palisades, New York, USA
172 schema:name Lamont-Doherty Geological Observatory of Columbia University, 10964, Palisades, New York, USA
173 rdf:type schema:Organization
174 grid-institutes:grid.264276.3 schema:alternateName State University of New York College at Purchase, 10577, Purchase, New York, USA
175 schema:name State University of New York College at Purchase, 10577, Purchase, New York, USA
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...