Recognizing corners by fitting parametric models View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-12

AUTHORS

Karl Rohr

ABSTRACT

The parametric model of a certain class of characteristic intensity variations in Rohr (1990, 1992), which is the superposition of elementary model functions, is employed to identify corners in images. Estimates of the searched model parameters characterizing completely single grey-value structures are determined by a least-squares fit of the model to the observed image intensities applying the minimization method of Levenberg-Marquardt. In particular, we develop an analytical approximation of our model in such a way that function values can be calculated without numerical integration. Assuming the blur of the imaging system to be describable by Gaussian convolution our approach permits subpixel localization of the corner position of the unblurred grey-value structures, that is, to reverse the blur of the imaging system. By fitting our model to the original as well as to the smoothed original-image cues can be obtained for finding out whether the underlying model is an adequate description or not. Results are shown for real image data. More... »

PAGES

213-230

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00133702

DOI

http://dx.doi.org/10.1007/bf00133702

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016293000


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Arbeitsbereich Kognitive Systeme, FB Informatik, Universit\u00e4t Hamburg, Bodenstedtstr 16, 2000, Hamburg 50, FRG", 
          "id": "http://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "Arbeitsbereich Kognitive Systeme, FB Informatik, Universit\u00e4t Hamburg, Bodenstedtstr 16, 2000, Hamburg 50, FRG"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rohr", 
        "givenName": "Karl", 
        "id": "sg:person.01214674260.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214674260.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-84305-1_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027817137", 
          "https://doi.org/10.1007/978-3-642-84305-1_25"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1992-12", 
    "datePublishedReg": "1992-12-01", 
    "description": "The parametric model of a certain class of characteristic intensity variations in Rohr (1990, 1992), which is the superposition of elementary model functions, is employed to identify corners in images. Estimates of the searched model parameters characterizing completely single grey-value structures are determined by a least-squares fit of the model to the observed image intensities applying the minimization method of Levenberg-Marquardt. In particular, we develop an analytical approximation of our model in such a way that function values can be calculated without numerical integration. Assuming the blur of the imaging system to be describable by Gaussian convolution our approach permits subpixel localization of the corner position of the unblurred grey-value structures, that is, to reverse the blur of the imaging system. By fitting our model to the original as well as to the smoothed original-image cues can be obtained for finding out whether the underlying model is an adequate description or not. Results are shown for real image data.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00133702", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1032807", 
        "issn": [
          "0920-5691", 
          "1573-1405"
        ], 
        "name": "International Journal of Computer Vision", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "real image data", 
      "observed image intensities", 
      "Levenberg-Marquardt", 
      "image data", 
      "parametric model", 
      "image intensity", 
      "Gaussian convolution", 
      "subpixel localization", 
      "underlying model", 
      "blur", 
      "function values", 
      "corner positions", 
      "imaging system", 
      "characteristic intensity variations", 
      "minimization method", 
      "certain class", 
      "intensity variations", 
      "images", 
      "model parameters", 
      "system", 
      "model", 
      "model function", 
      "integration", 
      "convolution", 
      "way", 
      "class", 
      "corner", 
      "method", 
      "description", 
      "data", 
      "approximation", 
      "localization", 
      "parameters", 
      "structure", 
      "numerical integration", 
      "position", 
      "cues", 
      "results", 
      "function", 
      "superposition", 
      "estimates", 
      "analytical approximation", 
      "least-squares fit", 
      "fit", 
      "values", 
      "variation", 
      "adequate description", 
      "intensity", 
      "approach", 
      "Rohr", 
      "elementary model functions", 
      "single grey-value structures", 
      "grey-value structures", 
      "unblurred grey-value structures", 
      "smoothed original-image cues", 
      "original-image cues"
    ], 
    "name": "Recognizing corners by fitting parametric models", 
    "pagination": "213-230", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016293000"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00133702"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00133702", 
      "https://app.dimensions.ai/details/publication/pub.1016293000"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T17:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_221.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00133702"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00133702'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00133702'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00133702'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00133702'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      22 PREDICATES      83 URIs      74 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00133702 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Na877ebbf924a4dae9a48271e15254def
4 schema:citation sg:pub.10.1007/978-3-642-84305-1_25
5 schema:datePublished 1992-12
6 schema:datePublishedReg 1992-12-01
7 schema:description The parametric model of a certain class of characteristic intensity variations in Rohr (1990, 1992), which is the superposition of elementary model functions, is employed to identify corners in images. Estimates of the searched model parameters characterizing completely single grey-value structures are determined by a least-squares fit of the model to the observed image intensities applying the minimization method of Levenberg-Marquardt. In particular, we develop an analytical approximation of our model in such a way that function values can be calculated without numerical integration. Assuming the blur of the imaging system to be describable by Gaussian convolution our approach permits subpixel localization of the corner position of the unblurred grey-value structures, that is, to reverse the blur of the imaging system. By fitting our model to the original as well as to the smoothed original-image cues can be obtained for finding out whether the underlying model is an adequate description or not. Results are shown for real image data.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N522fe0f5595349d6b48e0eec7a04f27c
12 N6c139181c46145bf88943b274d55abdd
13 sg:journal.1032807
14 schema:keywords Gaussian convolution
15 Levenberg-Marquardt
16 Rohr
17 adequate description
18 analytical approximation
19 approach
20 approximation
21 blur
22 certain class
23 characteristic intensity variations
24 class
25 convolution
26 corner
27 corner positions
28 cues
29 data
30 description
31 elementary model functions
32 estimates
33 fit
34 function
35 function values
36 grey-value structures
37 image data
38 image intensity
39 images
40 imaging system
41 integration
42 intensity
43 intensity variations
44 least-squares fit
45 localization
46 method
47 minimization method
48 model
49 model function
50 model parameters
51 numerical integration
52 observed image intensities
53 original-image cues
54 parameters
55 parametric model
56 position
57 real image data
58 results
59 single grey-value structures
60 smoothed original-image cues
61 structure
62 subpixel localization
63 superposition
64 system
65 unblurred grey-value structures
66 underlying model
67 values
68 variation
69 way
70 schema:name Recognizing corners by fitting parametric models
71 schema:pagination 213-230
72 schema:productId N28e7bfa84ad5464081b033a6b1e45c8d
73 Nd4f95002eec24cb7b7ee7275734fbb8c
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016293000
75 https://doi.org/10.1007/bf00133702
76 schema:sdDatePublished 2021-11-01T17:58
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N4065159c5cce4aeea2ab168f0068642d
79 schema:url https://doi.org/10.1007/bf00133702
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N28e7bfa84ad5464081b033a6b1e45c8d schema:name doi
84 schema:value 10.1007/bf00133702
85 rdf:type schema:PropertyValue
86 N4065159c5cce4aeea2ab168f0068642d schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 N522fe0f5595349d6b48e0eec7a04f27c schema:volumeNumber 9
89 rdf:type schema:PublicationVolume
90 N6c139181c46145bf88943b274d55abdd schema:issueNumber 3
91 rdf:type schema:PublicationIssue
92 Na877ebbf924a4dae9a48271e15254def rdf:first sg:person.01214674260.82
93 rdf:rest rdf:nil
94 Nd4f95002eec24cb7b7ee7275734fbb8c schema:name dimensions_id
95 schema:value pub.1016293000
96 rdf:type schema:PropertyValue
97 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
98 schema:name Information and Computing Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
101 schema:name Artificial Intelligence and Image Processing
102 rdf:type schema:DefinedTerm
103 sg:journal.1032807 schema:issn 0920-5691
104 1573-1405
105 schema:name International Journal of Computer Vision
106 schema:publisher Springer Nature
107 rdf:type schema:Periodical
108 sg:person.01214674260.82 schema:affiliation grid-institutes:grid.9026.d
109 schema:familyName Rohr
110 schema:givenName Karl
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214674260.82
112 rdf:type schema:Person
113 sg:pub.10.1007/978-3-642-84305-1_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027817137
114 https://doi.org/10.1007/978-3-642-84305-1_25
115 rdf:type schema:CreativeWork
116 grid-institutes:grid.9026.d schema:alternateName Arbeitsbereich Kognitive Systeme, FB Informatik, Universität Hamburg, Bodenstedtstr 16, 2000, Hamburg 50, FRG
117 schema:name Arbeitsbereich Kognitive Systeme, FB Informatik, Universität Hamburg, Bodenstedtstr 16, 2000, Hamburg 50, FRG
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...