Codes based on complete graphs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-05

AUTHORS

Dieter Jungnickel, Marialuisa J. De Resmini, Scott A. Vanstone

ABSTRACT

We consider the problem of embedding the even graphical code based on the complete graph onn vertices into a shortening of a Hamming code of length 2m-1, wherem = h(n) should be as small as possible. As it turns out, this problem is equivalent to the existence problem for optimal codes with minimum distance 5, and optimal embeddings can always be realized as graphical codes based onKn. As a consequence, we are able to determineh(n) exactly for alln of the form 2k + 1 and to narrow down the possibilities in general to two or three conceivable values. More... »

PAGES

159-165

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00130575

DOI

http://dx.doi.org/10.1007/bf00130575

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042677640


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lehrstuhl f\u00fcr Angewandte Mathematik II, Universit\u00e4t Augsburg, D-86135, Augsburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "Lehrstuhl f\u00fcr Angewandte Mathematik II, Universit\u00e4t Augsburg, D-86135, Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jungnickel", 
        "givenName": "Dieter", 
        "id": "sg:person.016273474670.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016273474670.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Matematica, Universit\u00e0 di Roma \u201cLa Sapienza\u201d, 2, Piazzale Aldo Moro, 1-00185, Roma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 di Roma \u201cLa Sapienza\u201d, 2, Piazzale Aldo Moro, 1-00185, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Resmini", 
        "givenName": "Marialuisa J.", 
        "id": "sg:person.012712302064.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012712302064.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept. of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ont., Canada", 
          "id": "http://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Dept. of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ont., Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vanstone", 
        "givenName": "Scott A.", 
        "id": "sg:person.010344544767.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344544767.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-662-07998-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040799465", 
          "https://doi.org/10.1007/978-3-662-07998-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-349-03521-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109703686", 
          "https://doi.org/10.1007/978-1-349-03521-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-05", 
    "datePublishedReg": "1996-05-01", 
    "description": "We consider the problem of embedding the even graphical code based on the complete graph onn vertices into a shortening of a Hamming code of length 2m-1, wherem = h(n) should be as small as possible. As it turns out, this problem is equivalent to the existence problem for optimal codes with minimum distance 5, and optimal embeddings can always be realized as graphical codes based onKn. As a consequence, we are able to determineh(n) exactly for alln of the form 2k + 1 and to narrow down the possibilities in general to two or three conceivable values.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00130575", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136552", 
        "issn": [
          "0925-1022", 
          "1573-7586"
        ], 
        "name": "Designs, Codes and Cryptography", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "graphical codes", 
      "Hamming code", 
      "optimal codes", 
      "complete graph onn vertices", 
      "optimal embedding", 
      "code", 
      "embedding", 
      "complete graph", 
      "graph", 
      "existence problem", 
      "vertices", 
      "form 2k", 
      "conceivable values", 
      "distance 5", 
      "minimum distance 5", 
      "possibility", 
      "graph onn vertices", 
      "values", 
      "consequences", 
      "ALLN", 
      "problem", 
      "shortening"
    ], 
    "name": "Codes based on complete graphs", 
    "pagination": "159-165", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042677640"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00130575"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00130575", 
      "https://app.dimensions.ai/details/publication/pub.1042677640"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_294.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00130575"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00130575'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00130575'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00130575'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00130575'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      21 PREDICATES      49 URIs      39 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00130575 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author N9406ad37dafd42978bff55e147ea858a
4 schema:citation sg:pub.10.1007/978-1-349-03521-2
5 sg:pub.10.1007/978-3-662-07998-0
6 schema:datePublished 1996-05
7 schema:datePublishedReg 1996-05-01
8 schema:description We consider the problem of embedding the even graphical code based on the complete graph onn vertices into a shortening of a Hamming code of length 2m-1, wherem = h(n) should be as small as possible. As it turns out, this problem is equivalent to the existence problem for optimal codes with minimum distance 5, and optimal embeddings can always be realized as graphical codes based onKn. As a consequence, we are able to determineh(n) exactly for alln of the form 2k + 1 and to narrow down the possibilities in general to two or three conceivable values.
9 schema:genre article
10 schema:isAccessibleForFree false
11 schema:isPartOf N0bb16eb89e2941928c19bbbf092d7f71
12 N189f2548052048baa8c7f0c133602b1c
13 sg:journal.1136552
14 schema:keywords ALLN
15 Hamming code
16 code
17 complete graph
18 complete graph onn vertices
19 conceivable values
20 consequences
21 distance 5
22 embedding
23 existence problem
24 form 2k
25 graph
26 graph onn vertices
27 graphical codes
28 minimum distance 5
29 optimal codes
30 optimal embedding
31 possibility
32 problem
33 shortening
34 values
35 vertices
36 schema:name Codes based on complete graphs
37 schema:pagination 159-165
38 schema:productId N6df32b78088449f5868add68ba45c96a
39 Ne3645d7fea5049d5a3cff10d03607af0
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042677640
41 https://doi.org/10.1007/bf00130575
42 schema:sdDatePublished 2022-09-02T15:48
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N1ceaf83b20664c6e952062b13a42832a
45 schema:url https://doi.org/10.1007/bf00130575
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N0bb16eb89e2941928c19bbbf092d7f71 schema:issueNumber 1-2
50 rdf:type schema:PublicationIssue
51 N189f2548052048baa8c7f0c133602b1c schema:volumeNumber 8
52 rdf:type schema:PublicationVolume
53 N1ceaf83b20664c6e952062b13a42832a schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N6df32b78088449f5868add68ba45c96a schema:name dimensions_id
56 schema:value pub.1042677640
57 rdf:type schema:PropertyValue
58 N9406ad37dafd42978bff55e147ea858a rdf:first sg:person.016273474670.91
59 rdf:rest Ncc6fe825cbf64df89482f6bb2401b32d
60 Nbc518cfbaf7b483daaa76b7173e91e54 rdf:first sg:person.010344544767.07
61 rdf:rest rdf:nil
62 Ncc6fe825cbf64df89482f6bb2401b32d rdf:first sg:person.012712302064.14
63 rdf:rest Nbc518cfbaf7b483daaa76b7173e91e54
64 Ne3645d7fea5049d5a3cff10d03607af0 schema:name doi
65 schema:value 10.1007/bf00130575
66 rdf:type schema:PropertyValue
67 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
68 schema:name Information and Computing Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
71 schema:name Data Format
72 rdf:type schema:DefinedTerm
73 sg:journal.1136552 schema:issn 0925-1022
74 1573-7586
75 schema:name Designs, Codes and Cryptography
76 schema:publisher Springer Nature
77 rdf:type schema:Periodical
78 sg:person.010344544767.07 schema:affiliation grid-institutes:grid.46078.3d
79 schema:familyName Vanstone
80 schema:givenName Scott A.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344544767.07
82 rdf:type schema:Person
83 sg:person.012712302064.14 schema:affiliation grid-institutes:grid.7841.a
84 schema:familyName De Resmini
85 schema:givenName Marialuisa J.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012712302064.14
87 rdf:type schema:Person
88 sg:person.016273474670.91 schema:affiliation grid-institutes:grid.7307.3
89 schema:familyName Jungnickel
90 schema:givenName Dieter
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016273474670.91
92 rdf:type schema:Person
93 sg:pub.10.1007/978-1-349-03521-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109703686
94 https://doi.org/10.1007/978-1-349-03521-2
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/978-3-662-07998-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040799465
97 https://doi.org/10.1007/978-3-662-07998-0
98 rdf:type schema:CreativeWork
99 grid-institutes:grid.46078.3d schema:alternateName Dept. of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ont., Canada
100 schema:name Dept. of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ont., Canada
101 rdf:type schema:Organization
102 grid-institutes:grid.7307.3 schema:alternateName Lehrstuhl für Angewandte Mathematik II, Universität Augsburg, D-86135, Augsburg, Germany
103 schema:name Lehrstuhl für Angewandte Mathematik II, Universität Augsburg, D-86135, Augsburg, Germany
104 rdf:type schema:Organization
105 grid-institutes:grid.7841.a schema:alternateName Dipartimento di Matematica, Università di Roma “La Sapienza”, 2, Piazzale Aldo Moro, 1-00185, Roma, Italy
106 schema:name Dipartimento di Matematica, Università di Roma “La Sapienza”, 2, Piazzale Aldo Moro, 1-00185, Roma, Italy
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...